Parameterized linear temporal logics meet costs: still not costlier than LTL

We continue the investigation of parameterized extensions of linear temporal logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for parametric LDL (PLDL), which extends PLTL to be able to express all $$\omega $$ω-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.

[1]  Rajeev Alur,et al.  Parametric temporal logic for “model measuring” , 2001, TOCL.

[2]  Martin Zimmermann,et al.  Parametric Linear Dynamic Logic , 2014, GandALF.

[3]  Mikolaj Bojanczyk Weak MSO+U with Path Quantifiers over Infinite Trees , 2014, ICALP.

[4]  César Sánchez,et al.  Regular Linear Temporal Logic , 2007, ICTAC.

[5]  Thomas Colcombet,et al.  Bounds in w-Regularity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[6]  A. Pnueli,et al.  On the Synthesis of an Asynchronous Reactive Module , 1989, ICALP.

[7]  César Sánchez,et al.  Visibly rational expressions , 2013, Acta Informatica.

[8]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[9]  T. Henzinger,et al.  Quantitative Synthesis for Concurrent Programs , 2011, CAV.

[10]  Krishnendu Chatterjee,et al.  Finitary winning in ω-regular games , 2009, TOCL.

[11]  Laura Bozzelli Alternating Automata and a Temporal Fixpoint Calculus for Visibly Pushdown Languages , 2007, CONCUR.

[12]  Martin Zimmermann Optimal Bounds in Parametric LTL Games , 2011, GandALF.

[13]  Martin Zimmermann,et al.  Parametric Linear Dynamic Logic (full version) , 2015, ArXiv.

[14]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[15]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[16]  Aniello Murano,et al.  On Promptness in Parity Games , 2013, LPAR.

[17]  Szymon Torunczyk,et al.  Weak MSO+U over infinite trees , 2012, STACS.

[18]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[19]  Martin Zimmermann Parameterized Linear Temporal Logics Meet Costs: Still not Costlier than LTL (full version) , 2015 .

[20]  Sven Schewe Solving Parity Games in Big Steps , 2007, FSTTCS.

[21]  Orna Kupferman,et al.  From liveness to promptness , 2007, Formal Methods Syst. Des..

[22]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[23]  Moshe Y. Vardi The Rise and Fall of LTL: Invited Presentation at the Second International Symposium on Games, Automata, Logics and Formal Verification , 2011 .

[24]  Martin Zimmermann,et al.  Approximating Optimal Bounds in Prompt-LTL Realizability in Doubly-exponential Time , 2016, GandALF.

[25]  César Sánchez,et al.  Visibly Linear Temporal Logic , 2014, IJCAR.

[26]  Krishnendu Chatterjee,et al.  Better Quality in Synthesis through Quantitative Objectives , 2009, CAV.

[27]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[28]  Giuseppe De Giacomo,et al.  Linear Temporal Logic and Linear Dynamic Logic on Finite Traces , 2013, IJCAI.

[29]  Krishnendu Chatterjee,et al.  Finitary Winning in omega-Regular Games , 2006, TACAS.

[30]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[31]  Martin Zimmermann,et al.  Parity and Streett Games with Costs , 2012, Log. Methods Comput. Sci..

[32]  Thomas Colcombet,et al.  Bounds in ω-regularity , .

[33]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[34]  Krishnendu Chatterjee,et al.  Mean-payoff parity games , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[35]  Mikolaj Bojanczyk,et al.  Weak MSO with the Unbounding Quantifier , 2009, Theory of Computing Systems.

[36]  Thomas Colcombet,et al.  The Theory of Stabilisation Monoids and Regular Cost Functions , 2009, ICALP.

[37]  A Bounding Quanti A Bounding Quantifier , .

[38]  Michael Vanden Boom Weak Cost Monadic Logic over Infinite Trees , 2011, MFCS.

[39]  Krishnendu Chatterjee,et al.  Energy Parity Games , 2010, ICALP.

[40]  Krishnendu Chatterjee,et al.  Efficient Controller Synthesis for Consumption Games with Multiple Resource Types , 2012, CAV.