Studies of electron trapping in III-nitride semiconductors

Effects of electron irradiation on GaN and AlxGa1-xN doped with acceptor-forming species (Mg, C, Fe, and Mn) were studied by cathodoluminescence and electron beam induced current techniques. Low energy electron beam irradiation was shown to induce a systematic decay of the cathodoluminescence intensity, which is accompanied by increased electronic carrier diffusion length, indicating the increase of carrier lifetime. Temperature-dependent cathodoluminescence measurements allowed to estimate the activation energy for irradiation-induced effects, which was found to be comparable to the ionization energy of the dominant acceptor species. These observations are consistent with trapping of non- equilibrium electrons on deep, non-ionized acceptor levels. In (Al) GaN:Mg and GaN:C electrons are trapped by the ground state of the neutral acceptor atom, while in TM-doped compounds, electron irradiation induced processes appear to involve a more energetically accessible excited states of the acceptors.

[1]  Thonke,et al.  Charge-transfer transitions and pseudoacceptor states of iron in gallium phosphide. , 1993, Physical review. B, Condensed matter.

[2]  Hadis Morkoç,et al.  Nature of Mg impurities in GaN , 1996 .

[3]  Michael Kunzer,et al.  Determination of the GaN/AlN band offset via the (/0) acceptor level of iron , 1994 .

[4]  David R. Tallant,et al.  Luminescence in GaN co-doped with carbon and silicon , 2004 .

[5]  S. Nakamura,et al.  Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .

[6]  W. Grieshaber,et al.  Enhancement of deep acceptor activation in semiconductors by superlattice doping , 1996 .

[7]  Oliver Ambacher,et al.  The Mn3+/2+ acceptor level in group III nitrides , 2002 .

[8]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[9]  Xueping Xu,et al.  Characteristics of semi-insulating, Fe-doped GaN substrates , 2003 .

[10]  Andrei Osinsky,et al.  Influence of electron injection on performance of GaN photodetectors , 2002 .

[11]  Dejun Fu,et al.  Ferromagnetic behavior of p-type GaN epilayer implanted with Fe+ ions , 2004 .

[12]  Andrei Osinsky,et al.  Electron beam-induced increase of electron diffusion length in p-type GaN and AlGaN/GaN superlattices , 2000 .

[13]  Andrei Osinsky,et al.  Electronic states in modulation doped p-AlGaN/GaN superlattices , 2001 .

[14]  Martin Eickhoff,et al.  Electron injection-induced effects in Mn-doped GaN , 2004 .

[15]  Jacek B. Jasinski,et al.  Electron beam and optical depth profiling of quasibulk GaN , 2000 .

[16]  L. E. Ramos,et al.  Substitutional carbon in group-III nitrides: Ab initio description of shallow and deep levels , 2002 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  M. Asif Khan,et al.  Metastability and persistent photoconductivity in Mg‐doped p‐type GaN , 1996 .

[19]  Alan Francis Wright,et al.  Substitutional and interstitial oxygen in wurtzite GaN , 2002 .

[20]  Andrei Osinsky,et al.  Cathodoluminescence studies of the electron injection-induced effects in GaN , 2003 .

[21]  S. J. Pearton,et al.  CCl4 doping of GaN grown by metalorganic molecular beam epitaxy , 1995 .

[22]  Martin S. Brandt,et al.  Prospects for carrier‐mediated ferromagnetism in GaN , 2003 .

[23]  Yung-Ting Chen,et al.  AlxGa1−xN/GaN band offsets determined by deep-level emission , 2001 .

[24]  Henryk Temkin,et al.  Electron beam induced current measurements of minority carrier diffusion length in gallium nitride , 1996 .

[25]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[26]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[27]  O. Lopatiuk,et al.  The optical signature of electron injection in p-(Al)GaN , 2003 .

[28]  Eicke R. Weber,et al.  Electrical and Optical Properties of Carbon-Doped GaN Grown by MBE on MOCVD GaN Templates Using a CCl 4 Dopant Source , 2002 .

[29]  Klaus Lischka,et al.  p-Type Doping of Cubic GaN by Carbon , 2001 .

[30]  D. P. Lowney,et al.  Evaluation of the optical properties of epitaxial lateral overgrown gallium nitride on sapphire and the role of optically active metastable defects using cathodoluminescence and photoluminescence spectroscopy , 2005 .

[31]  Subhasis Ghosh,et al.  Optical metastability in undoped GaN grown on Ga-rich GaN buffer layers , 2002 .

[32]  Amir Dabiran,et al.  Impact of aluminum concentration and magnesium doping on the effect of electron injection in p-AlxGa1−xN , 2003 .

[33]  Robert M. Fletcher,et al.  Hall-effect characterization of III–V nitride semiconductors for high efficiency light emitting diodes , 1999 .

[34]  Sergio E. Ulloa,et al.  ACCEPTOR BINDING ENERGIES IN GAN AND ALN , 1998 .

[35]  Veaceslav Ursaki,et al.  Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation , 2003 .

[36]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[37]  Robert F. Davis,et al.  Optical metastability of subband gap (2.2 eV) yellow luminescence in GaN , 2001 .