A Survey of the Sources of Noise in fMRI

Functional magnetic resonance imaging (fMRI) is a noninvasive method for measuring brain function by correlating temporal changes in local cerebral blood oxygenation with behavioral measures. fMRI is used to study individuals at single time points, across multiple time points (with or without intervention), as well as to examine the variation of brain function across normal and ill populations. fMRI may be collected at multiple sites and then pooled into a single analysis. This paper describes how fMRI data is analyzed at each of these levels and describes the noise sources introduced at each level.

[1]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[2]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[3]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[4]  R W Cox,et al.  Real‐time 3D image registration for functional MRI , 1999, Magnetic resonance in medicine.

[5]  R. Thomas,et al.  Modafinil activates cortical and subcortical sites in the sleep-deprived state. , 2006, Sleep.

[6]  John Suckling,et al.  Components of variance in a multicentre functional MRI study and implications for calculation of statistical power , 2008, Human brain mapping.

[7]  Michele T. Diaz,et al.  Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies , 2012, Journal of magnetic resonance imaging : JMRI.

[8]  Richard B. Buxton,et al.  A Primer on Functional Magnetic Resonance Imaging , 2007, Neuropsychology Review.

[9]  Bryon A Mueller,et al.  An Introduction to Normalization and Calibration Methods in Functional MRI , 2013, Psychometrika.

[10]  M. D’Esposito,et al.  The Effect of Normal Aging on the Coupling of Neural Activity to the Bold Hemodynamic Response , 1999, NeuroImage.

[11]  Catie Chang,et al.  Effects of model-based physiological noise correction on default mode network anti-correlations and correlations , 2009, NeuroImage.

[12]  Irene Tracey,et al.  Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal , 2004, NeuroImage.

[13]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[14]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[15]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[17]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[18]  Mark W. Woolrich,et al.  Fully Bayesian spatio-temporal modeling of FMRI data , 2004, IEEE Transactions on Medical Imaging.

[19]  Babak Shahbaba,et al.  A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-site Experimental fMRI Study , 2012, Psychometrika.

[20]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[21]  James Voyvodic,et al.  A novel method for quantifying scanner instability in fMRI , 2011, Magnetic resonance in medicine.

[22]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[23]  A. Kelly,et al.  Human functional neuroimaging of brain changes associated with practice. , 2005, Cerebral cortex.

[24]  L. Shah,et al.  Functional magnetic resonance imaging. , 2010, Seminars in roentgenology.

[25]  Alan C. Evans,et al.  A general statistical analysis for fMRI data , 2000, NeuroImage.

[26]  S Thesen,et al.  Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI , 2000, Magnetic resonance in medicine.

[27]  Catie Chang,et al.  Influence of heart rate on the BOLD signal: The cardiac response function , 2009, NeuroImage.

[28]  Anders M. Dale,et al.  On-line automatic slice positioning for brain MR imaging , 2005, NeuroImage.

[29]  Stephen M Smith,et al.  Variability in fMRI: A re‐examination of inter‐session differences , 2005, Human brain mapping.

[30]  Lee Friedman,et al.  Report on a multicenter fMRI quality assurance protocol , 2006, Journal of magnetic resonance imaging : JMRI.

[31]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[32]  Thomas M. Talavage,et al.  Simulation of human respiration in fMRI with a mechanical model , 2002, IEEE Transactions on Biomedical Engineering.

[33]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[34]  Anders M. Dale,et al.  Cerebral perfusion and oxygenation differences in Alzheimer's disease risk , 2009, Neurobiology of Aging.

[35]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[36]  P. Renshaw,et al.  Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion , 1998, Psychiatry Research: Neuroimaging.

[37]  G. McCarthy,et al.  Evidence for a Refractory Period in the Hemodynamic Response to Visual Stimuli as Measured by MRI , 2000, NeuroImage.

[38]  P. Comba,et al.  Part I. Theory , 2007 .

[39]  L. Hanson Is quantum mechanics necessary for understanding magnetic resonance , 2008 .

[40]  Stephen M. Smith,et al.  Functional MRI : an introduction to methods , 2002 .

[41]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[42]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[43]  Bruce Fischl,et al.  Combined Volumetric and Surface Registration , 2009, IEEE Transactions on Medical Imaging.

[44]  A. M. Dale,et al.  A Coordinate System for the Cortical Surface , 1998, NeuroImage.

[45]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[46]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[47]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[48]  Veena Kumari,et al.  Cognitive effects of nicotine in humans: an fMRI study , 2003, NeuroImage.

[49]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[50]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[51]  Lars Kai Hansen,et al.  Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis , 2004, NeuroImage.

[52]  Martin M. Monti,et al.  Human Neuroscience , 2022 .

[53]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[54]  J. Detre,et al.  Reduced Transit-Time Sensitivity in Noninvasive Magnetic Resonance Imaging of Human Cerebral Blood Flow , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[55]  S. Payne A model of the interaction between autoregulation and neural activation in the brain. , 2006, Mathematical biosciences.

[56]  V. D. Calhoun,et al.  fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms , 2004, NeuroImage.

[57]  Weili Lin Principles of magnetic resonance imaging: a signal processing perspective [Book Review] , 2000, IEEE Engineering in Medicine and Biology Magazine.

[58]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[59]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[60]  Alan J. Lee,et al.  Linear Regression Analysis: Seber/Linear , 2003 .

[61]  Jessica A. Turner,et al.  Multisite reliability of cognitive BOLD data , 2011, NeuroImage.

[62]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[63]  T A Carpenter,et al.  Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains , 2001, Human brain mapping.

[64]  Richard B. Buxton,et al.  Comprar Introduction to Functional Magnetic Resonance Imaging | Richard B. Buxton | 9780521899956 | Cambridge University Press , 2009 .

[65]  B Maus,et al.  Optimization of Blocked Designs in fMRI Studies , 2009, NeuroImage.

[66]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[67]  A. Sterr,et al.  A Template Effect Study on Voxel-Based Morphometry in Statistic Parametric Mapping , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[68]  Thomas E. Nichols,et al.  Validating cluster size inference: random field and permutation methods , 2003, NeuroImage.

[69]  Dwight G. Nishimura,et al.  Principles of magnetic resonance imaging , 2010 .

[70]  Karl J. Friston,et al.  Variability in fMRI: An Examination of Intersession Differences , 2000, NeuroImage.

[71]  Thomas T. Liu,et al.  Efficiency, power, and entropy in event-related FMRI with multiple trial types Part I: theory , 2004, NeuroImage.

[72]  Peter A. Bandettini,et al.  Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI , 2006, NeuroImage.

[73]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[74]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[75]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[76]  Donald B. Twieg,et al.  Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis , 2005, IEEE Transactions on Medical Imaging.

[77]  S. Rossitti Introduction to Functional Magnetic Resonance Imaging, Principles and Techniques , 2002 .

[78]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[79]  Mark S. Cohen,et al.  Parametric Analysis of fMRI Data Using Linear Systems Methods , 1997, NeuroImage.

[80]  Karl J. Friston,et al.  A Study of Analysis Parameters That Influence the Sensitivity of Event-Related fMRI Analyses , 2000, NeuroImage.

[81]  Arş,et al.  Is Quantum Mechanics necessary for understanding Magnetic Resonance? , 2008 .

[82]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[83]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[84]  Gregory G. Brown,et al.  r Human Brain Mapping 29:958–972 (2008) r Test–Retest and Between-Site Reliability in a Multicenter fMRI Study , 2022 .

[85]  Mohamed-Jalal Fadili,et al.  Fractional Gaussian noise, functional MRI and Alzheimer's disease , 2005, NeuroImage.

[86]  R. Turner,et al.  Detecting Latency Differences in Event-Related BOLD Responses: Application to Words versus Nonwords and Initial versus Repeated Face Presentations , 2002, NeuroImage.

[87]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[88]  C. Jack,et al.  Prospective multiaxial motion correction for fMRI , 2000, Magnetic resonance in medicine.

[89]  Thomas T. Liu,et al.  Caffeine alters the temporal dynamics of the visual BOLD response , 2004, NeuroImage.