Climatic Niche Estimation, Trait Evolution and Species Richness in North American Carex (Cyperaceae)

[1]  J. Wiens,et al.  The Causes Of Species Richness Patterns Across Space, Time, And Clades And The Role Of “Ecological Limits” , 2011, The Quarterly Review of Biology.

[2]  Guilherme Oliveira,et al.  Assessing the efficiency of multiple sequence alignment programs , 2014, Algorithms for Molecular Biology.

[3]  J. Weir,et al.  Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. , 2014, Ecology letters.

[4]  R. Lichvar The National Wetland Plant List , 2012 .

[5]  S. Handel THE COMPETITIVE RELATIONSHIP OF THREE WOODLAND SEDGES AND ITS BEARING ON THE EVOLUTION OF ANT‐DISPERSAL OF CAREX PEDUNCULATA , 1978, Evolution; international journal of organic evolution.

[6]  M. Arnold,et al.  Spurring plant diversification: are floral nectar spurs a key innovation? , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  C. Bailey,et al.  Recovery of plant DNA using a reciprocating saw and silica‐based columns , 2006 .

[8]  D. Penny The comparative method in evolutionary biology , 1992 .

[9]  A. Peterson,et al.  New developments in museum-based informatics and applications in biodiversity analysis. , 2004, Trends in ecology & evolution.

[10]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[11]  D. Rabosky Ecological Limits on Clade Diversification in Higher Taxa , 2009, The American Naturalist.

[12]  R. FitzJohn Diversitree: comparative phylogenetic analyses of diversification in R , 2012 .

[13]  R. Eastwood,et al.  Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes , 2006, Proceedings of the National Academy of Sciences.

[14]  Stephen A. Smith,et al.  Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation , 2013, Nature Communications.

[15]  J. Losos,et al.  Chapter 15 Adaptive Radiation : The Interaction of Ecological Opportunity , Adaptation , and Speciation , 2010 .

[16]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[17]  Tim Newbold,et al.  Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models , 2010 .

[18]  M. J. Waterway,et al.  Phylogeny, Species Richness, and Ecological Specialization in Cyperaceae Tribe Cariceae , 2009, The Botanical Review.

[19]  E. W. Davies CYTOLOGY, EVOLUTION AND ORIGIN OF THE ANEUPLOID SERIES IN THE GENUS CAREX , 2010 .

[20]  Alejandro Gonzalez-Voyer,et al.  An Introduction to Phylogenetic Path Analysis , 2014 .

[21]  A. Hipp,et al.  Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae). , 2011, American journal of botany.

[22]  V. Savolainen,et al.  EVOLUTIONARY RATES AND SPECIES DIVERSITY IN FLOWERING PLANTS , 2001, Evolution; international journal of organic evolution.

[23]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[24]  A. Hipp,et al.  Karyotype stability and predictors of chromosome number variation in sedges: a study in Carex section Spirostachyae (Cyperaceae). , 2010, Molecular phylogenetics and evolution.

[25]  Bengt Oxelman,et al.  Chloroplastrps16 intron phylogeny of the tribeSileneae (Caryophyllaceae) , 1997, Plant Systematics and Evolution.

[26]  George Gaylord Simpson,et al.  Major Features Of Evolution , 1954 .

[27]  V. Sánchez‐Cordero,et al.  Conservatism of ecological niches in evolutionary time , 1999, Science.

[28]  R. Ricklefs,et al.  Evolutionary diversification of clades of squamate reptiles , 2007, Journal of evolutionary biology.

[29]  M. Turelli,et al.  Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution , 2008, Evolution; international journal of organic evolution.

[30]  S. Nokkala,et al.  Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents , 2004, Chromosome Research.

[31]  I. Lovette,et al.  Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. , 2014, Systematic biology.

[32]  Jorge Soberón,et al.  The big questions for biodiversity informatics , 2010 .

[33]  D. Adams,et al.  Are rates of species diversification correlated with rates of morphological evolution? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[34]  S. Stanley,et al.  Macroevolution: Pattern and Process , 1980 .

[35]  M. Pigliucci Is evolvability evolvable? , 2008, Nature Reviews Genetics.

[36]  M. Vences,et al.  Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory , 2009, Proceedings of the National Academy of Sciences.

[37]  M. Sugiura,et al.  An organellar maturase associates with multiple group II introns , 2010, Proceedings of the National Academy of Sciences.

[38]  A. Hipp,et al.  Phylogeny and Classification of Carex Section Ovales (Cyperaceae) , 2006, International Journal of Plant Sciences.

[39]  T. F. Hansen,et al.  Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). , 2012, The New phytologist.

[40]  J. Starr,et al.  Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae) , 2009, Molecular ecology resources.

[41]  R. Ricklefs Global variation in the diversification rate of passerine birds. , 2006, Ecology.

[42]  C. R. Metcalfe,et al.  Systematic Anatomy of the Cyperaceae@@@Anatomy of the Monocotyledons... V. Cyperaceae... , 1972 .

[43]  V. Grant,et al.  POLLINATION SYSTEMS AS ISOLATING MECHANISMS IN ANGIOSPERMS , 1949, Evolution; international journal of organic evolution.

[44]  R. Dennis,et al.  Bias in Butterfly Distribution Maps: The Influence of Hot Spots and Recorder's Home Range , 2000, Journal of Insect Conservation.

[45]  D. Frodin History and Concepts of Big Plant Genera , 2004 .

[46]  R. Glor Phylogenetic Insights on Adaptive Radiation , 2010 .

[47]  A. Meyer,et al.  Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences , 1990, Nature.

[48]  A. Reznicek Sedges: Uses, Diversity, and Systematics of the Cyperaceae , 2009 .

[49]  J. Wiens,et al.  Climatic zonation drives latitudinal variation in speciation mechanisms , 2007, Proceedings of the Royal Society B: Biological Sciences.

[50]  R. Ricklefs Disintegration of the Ecological Community , 2008, The American Naturalist.

[51]  E. Roalson A Synopsis of Chromosome Number Variation in the Cyperaceae , 2008, The Botanical Review.

[52]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[53]  S. Downie,et al.  A comparison of nrDNA ITS and ETS loci for phylogenetic inference in the Umbelliferae: an example from tribe Tordylieae. , 2010, Molecular phylogenetics and evolution.

[54]  J. Grinnell The Niche-Relationships of the California Thrasher , 1917 .

[55]  J. Hunter Key innovations and the ecology of macroevolution. , 1998, Trends in ecology & evolution.

[56]  Andrew Meade,et al.  Multiple routes to mammalian diversity , 2011, Nature.

[57]  Ajith H. Perera,et al.  Expert Knowledge as a Basis for Landscape Ecological Predictive Models , 2011 .

[58]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .

[59]  Paul D N Hebert,et al.  Express barcodes: racing from specimen to identification , 2009, Molecular ecology resources.

[60]  J. Starr,et al.  Phylogeny and Evolution in Cariceae (Cyperaceae): Current Knowledge and Future Directions , 2009, The Botanical Review.

[61]  Kate E. Jones,et al.  Correlates of Species Richness in Mammals: Body Size, Life History, and Ecology , 2005, The American Naturalist.

[62]  G. Turner The Ecology of Adaptive Radiation , 2001, Heredity.

[63]  Linda Partridge The Masterpiece of Nature: The Evolution and Genetics of Sexuality, Graham Bell. Croom Helm, London and Canberra (1982), 635, Price £25.00 , 1983 .

[64]  R. Ricklefs,et al.  Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  J. Wiens,et al.  Accelerated rates of climatic-niche evolution underlie rapid species diversification. , 2010, Ecology letters.

[66]  R. Ricklefs Global diversification rates of passerine birds , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[67]  Tim Sutton,et al.  How Global Is the Global Biodiversity Information Facility? , 2007, PloS one.

[68]  M. Vellend,et al.  Germination and establishment of forest sedges (Carex, Cyperaceae): tests for home-site advantage and effects of leaf litter. , 2000, American journal of botany.

[69]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[70]  Todd H. Oakley,et al.  INDEPENDENT CONTRASTS SUCCEED WHERE ANCESTOR RECONSTRUCTION FAILS IN A KNOWN BACTERIOPHAGE PHYLOGENY , 2000, Evolution; international journal of organic evolution.

[71]  A. Peterson Ecological niche conservatism: a time‐structured review of evidence , 2011 .

[72]  J. Tobias,et al.  Sexually Selected Traits Predict Patterns of Species Richness in a Diverse Clade of Suboscine Birds , 2008, The American Naturalist.

[73]  C. R. Metcalfe ANATOMY AS AN AID TO CLASSIFYING THE CYPERACEAE , 1969 .

[74]  M. Gandolfo,et al.  Monocot fossils suitable for molecular dating analyses , 2015 .

[75]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[76]  G. Bell,et al.  Environmental heterogeneity and species diversity of forest sedges , 2000 .

[77]  Hugh G. Gauch,et al.  A COMPARATIVE STUDY OF RECIPROCAL AVERAGING AND OTHER ORDINATION TECHNIQUES , 1977 .

[78]  S. Reddy,et al.  Geographical sampling bias and its implications for conservation priorities in Africa , 2003 .

[79]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[80]  T. F. Hansen,et al.  A Comparative Method for Studying Adaptation to a Randomly Evolving Environment , 2008, Evolution; international journal of organic evolution.

[81]  M. J. Waterway,et al.  Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). , 2012, Molecular phylogenetics and evolution.

[82]  Wolfgang Schwanghart,et al.  Spatial bias in the GBIF database and its effect on modeling species' geographic distributions , 2014, Ecol. Informatics.

[83]  Allan D. Woodbury,et al.  Urban heat island in the subsurface , 2007 .

[84]  S. Hubbell,et al.  The unified neutral theory of biodiversity and biogeography at age ten. , 2011, Trends in ecology & evolution.

[85]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[86]  D. Rabosky Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. , 2009, Ecology letters.

[87]  J. Wendel,et al.  Ribosomal ITS sequences and plant phylogenetic inference. , 2003, Molecular phylogenetics and evolution.

[88]  M. Donoghue,et al.  Shifts in Diversification Rate with the Origin of Angiosperms , 1994, Science.

[89]  J. Streelman,et al.  The stages of vertebrate evolutionary radiation , 2003 .

[90]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[91]  D. Adams,et al.  RATES OF MORPHOLOGICAL EVOLUTION ARE CORRELATED WITH SPECIES RICHNESS IN SALAMANDERS , 2012, Evolution; international journal of organic evolution.

[92]  A. Hipp,et al.  Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes , 2010, Molecular ecology.

[93]  R. A. Pyron,et al.  Phylogenetic niche conservatism and the evolutionary basis of ecological speciation , 2015, Biological reviews of the Cambridge Philosophical Society.

[94]  Berit Gehrke,et al.  Time, space and ecology: why some clades have more species than others , 2011 .

[95]  Shiliang Zhou,et al.  New universal matK primers for DNA barcoding angiosperms , 2011 .

[96]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[97]  Z. Huaman,et al.  Assessing the Geographic Representativeness of Genebank Collections: the Case of Bolivian Wild Potatoes , 2000, Conservation biology : the journal of the Society for Conservation Biology.

[98]  A. Hirzel,et al.  Which is the optimal sampling strategy for habitat suitability modelling , 2002 .

[99]  Peter R. Minchin,et al.  An evaluation of the relative robustness of techniques for ecological ordination , 1987 .

[100]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[101]  Mark A McPeek,et al.  Clade Age and Not Diversification Rate Explains Species Richness among Animal Taxa , 2007, The American Naturalist.

[102]  J. Kartesz,et al.  The Biota of North America Program (BONAP), Taxonomic Data Center. , 2018 .

[103]  R. Kadmon,et al.  EFFECT OF ROADSIDE BIAS ON THE ACCURACY OF PREDICTIVE MAPS PRODUCED BY BIOCLIMATIC MODELS , 2004 .

[104]  Robert C. Edgar,et al.  Multiple sequence alignment. , 2006, Current opinion in structural biology.

[105]  Michael J. Sanderson,et al.  TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD , 2006, Evolution; international journal of organic evolution.

[106]  J. Starr,et al.  Calliscirpus, a new genus for two narrow endemics of the California Floristic Province, C. criniger and C. brachythrix sp. nov. (Cyperaceae) , 2013, Kew Bulletin.

[107]  M. J. Waterway,et al.  Segregation of sedge species (Cyperaceae) along environmental gradients in fens of the Schefferville region, northern Quebec. , 2008 .

[108]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[109]  W. Godsoe,et al.  Ecological opportunity and the origin of adaptive radiations , 2010, Journal of evolutionary biology.

[110]  S. Adamowicz,et al.  Increasing morphological complexity in multiple parallel lineages of the Crustacea , 2008, Proceedings of the National Academy of Sciences.

[111]  J. Starr,et al.  Searching for the sister to sedges (Carex): resolving relationships in the Cariceae-Dulichieae-Scirpeae clade (Cyperaceae) , 2014 .

[112]  D. Rabosky,et al.  Model inadequacy and mistaken inferences of trait-dependent speciation. , 2014, Systematic biology.

[113]  Berit Gehrke,et al.  Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription , 2015 .

[114]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[115]  A. Hipp,et al.  Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae). , 2013, American journal of botany.

[116]  Daniel L. Rabosky,et al.  Clade Age and Species Richness Are Decoupled Across the Eukaryotic Tree of Life , 2012, PLoS biology.

[117]  Luke J Harmon,et al.  Species diversity is dynamic and unbounded at local and continental scales. , 2015, The American naturalist.

[118]  D. Rabosky,et al.  Species richness at continental scales is dominated by ecological limits. , 2015, The American naturalist.

[119]  Peter E Midford,et al.  Estimating a binary character's effect on speciation and extinction. , 2007, Systematic biology.

[120]  Richard G FitzJohn,et al.  Quantitative traits and diversification. , 2010, Systematic biology.

[121]  Jorge Soberón,et al.  The use of specimen-label databases for conservation purposes: an example using Mexican Papilionid and Pierid butterflies , 2000, Biodiversity & Conservation.

[122]  J. Lobo,et al.  Historical bias in biodiversity inventories affects the observed environmental niche of the species , 2008 .

[123]  M. Hill,et al.  Detrended correspondence analysis: an improved ordination technique , 1980 .

[124]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[125]  V. Savolainen,et al.  Unparalleled rates of species diversification in Europe , 2010, Proceedings of the Royal Society B: Biological Sciences.

[126]  Susanne A. Fritz,et al.  Diversity in time and space: wanted dead and alive. , 2013, Trends in ecology & evolution.

[127]  Liam J. Revell,et al.  Two new graphical methods for mapping trait evolution on phylogenies , 2013 .

[128]  Richard G FitzJohn,et al.  Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. , 2009, Systematic biology.

[129]  P. Poschlod,et al.  Assessing the relative importance of dispersal in plant communities using an ecoinformatics approach , 2005, Folia Geobotanica.

[130]  M. J. Waterway,et al.  Phylogeny, systematics, and trait evolution of Carex section Glareosae. , 2015, American journal of botany.

[131]  J. Weir,et al.  Evolutionary rates across gradients , 2015 .

[132]  Jorge Soberón Grinnellian and Eltonian niches and geographic distributions of species. , 2007, Ecology letters.

[133]  H. Linder,et al.  On the complexity of triggering evolutionary radiations. , 2015, The New phytologist.

[134]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[135]  M. Zelditch,et al.  Relationships of diversity, disparity, and their evolutionary rates in squirrels (Sciuridae) , 2015, Evolution; international journal of organic evolution.

[136]  Sister-group analysis in identifying correlates of diversification , 2004, Evolutionary Ecology.

[137]  R. Whitkus Experimental Hybridizations among Chromosome Races of Carex pachystachya and the Related Species C. macloviana and C. preslii (Cyperaceae) , 1988 .

[138]  A. Reznicek Evolution in sedges (Carex, Cyperaceae) , 1990 .

[139]  S. Castroviejo,et al.  Agmatoploidy inCarex laevigata (Cyperaceae). Fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations , 1991, Plant Systematics and Evolution.

[140]  Emmanuel Paradis,et al.  An Introduction to the Phylogenetic Comparative Method , 2014 .

[141]  S. Stanley A theory of evolution above the species level. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[142]  J. Starr,et al.  Three new, early diverging Carex (Cariceae, Cyperaceae) lineages from East and Southeast Asia with important evolutionary and biogeographic implications. , 2015, Molecular phylogenetics and evolution.

[143]  S. Heard,et al.  PATTERNS IN TREE BALANCE AMONG CLADISTIC, PHENETIC, AND RANDOMLY GENERATED PHYLOGENETIC TREES , 1992, Evolution; international journal of organic evolution.