The RelB alternative NF-kappaB subunit promotes autophagy in 22Rv1 prostate cancer cells in vitro and affects mouse xenograft tumor growth in vivo

[1]  C. Le Page,et al.  The RelB alternative NF-kappaB subunit promotes autophagy in 22Rv1 prostate cancer cells in vitro and affects mouse xenograft tumor growth in vivo , 2014, Cancer Cell International.

[2]  O. Sansom,et al.  NFκB signalling is upregulated in a subset of castrate-resistant prostate cancer patients and correlates with disease progression , 2012, British Journal of Cancer.

[3]  D. S. St. Clair,et al.  Inverse Relationship between PSA and IL-8 in Prostate Cancer: An Insight into a NF-κB-Mediated Mechanism , 2012, PloS one.

[4]  A. Mes-Masson,et al.  Necdin, a p53-Target Gene, Is an Inhibitor of p53-Mediated Growth Arrest , 2012, PloS one.

[5]  F. Rescorla,et al.  Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. , 2012, Cellular signalling.

[6]  N. Perkins,et al.  The diverse and complex roles of NF-κB subunits in cancer , 2012, Nature Reviews Cancer.

[7]  E. Giannoni,et al.  Anoikis: an emerging hallmark in health and diseases , 2012, The Journal of pathology.

[8]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[9]  Marta C Guadamillas,et al.  Overcoming anoikis – pathways to anchorage-independent growth in cancer , 2011, Journal of Cell Science.

[10]  Shao-Cong Sun,et al.  Non-canonical NF-κB signaling pathway , 2011, Cell Research.

[11]  C. Horbinski,et al.  Live free or die: tales of homeless (cells) in cancer. , 2010, The American journal of pathology.

[12]  G. Sonenshein,et al.  Inhibition of RelB by 1,25‐dihydroxyvitamin D3 promotes sensitivity of breast cancer cells to radiation , 2009, Journal of cellular physiology.

[13]  C. Schneider,et al.  p65/RelA binds and activates the beclin 1 promoter , 2009, Autophagy.

[14]  P. Yaswen,et al.  A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells , 2009, PloS one.

[15]  J. Campisi,et al.  Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion , 2009, Nature Cell Biology.

[16]  D. S. St. Clair,et al.  RelB enhances prostate cancer growth: implications for the role of the nuclear factor-kappaB alternative pathway in tumorigenicity. , 2009, Cancer research.

[17]  E. Dalla,et al.  p65/RelA Modulates BECN1 Transcription and Autophagy , 2009, Molecular and Cellular Biology.

[18]  P. Codogno,et al.  Autophagy activation by NFkappaB is essential for cell survival after heat shock. , 2009, Autophagy.

[19]  Paola Chiarugi,et al.  Anoikis: a necessary death program for anchorage-dependent cells. , 2008, Biochemical pharmacology.

[20]  F. Cecconi,et al.  Autophagic and apoptotic response to stress signals in mammalian cells. , 2007, Archives of biochemistry and biophysics.

[21]  G. Xiao Autophagy and NF-κB: Fight for fate , 2007 .

[22]  J. Diallo,et al.  NF-κB2 processing and p52 nuclear accumulation after androgenic stimulation of LNCaP prostate cancer cells , 2007 .

[23]  G. Sonenshein,et al.  Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2 , 2007, Nature Cell Biology.

[24]  P. Kantoff,et al.  Advances in the treatment of prostate cancer. , 2007, Annual review of medicine.

[25]  J. Diallo,et al.  Regulation of IκB Kinase ε Expression by the Androgen Receptor and the Nuclear Factor-κB Transcription Factor in Prostate Cancer , 2007, Molecular Cancer Research.

[26]  G. Xiao Autophagy and NF-kappaB: fight for fate. , 2007, Cytokine & growth factor reviews.

[27]  J. Diallo,et al.  NF-kappaB2 processing and p52 nuclear accumulation after androgenic stimulation of LNCaP prostate cancer cells. , 2007, Cellular signalling.

[28]  J. Diallo,et al.  Regulation of IkappaB kinase epsilon expression by the androgen receptor and the nuclear factor-kappaB transcription factor in prostate cancer. , 2007, Molecular cancer research : MCR.

[29]  L. Lessard,et al.  Nuclear Localization of Nuclear Factor-κB p65 in Primary Prostate Tumors Is Highly Predictive of Pelvic Lymph Node Metastases , 2006, Clinical Cancer Research.

[30]  A. Thorburn,et al.  Autophagy in cancer: good, bad, or both? , 2006, Cancer research.

[31]  I. H. Koumakpayi,et al.  Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients , 2006, British Journal of Cancer.

[32]  W. Clair,et al.  RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells , 2006, Oncogene.

[33]  T. Gilmore,et al.  Introduction to NF-kappaB: players, pathways, perspectives. , 2006, Oncogene.

[34]  O. Issinger,et al.  Profiling of signaling molecules in four different human prostate carcinoma cell lines before and after induction of apoptosis. , 2006, International journal of oncology.

[35]  E. Campo,et al.  Activation of nuclear factor-κB in human prostate carcinogenesis and association to biochemical relapse , 2005, British Journal of Cancer.

[36]  D. Seldin,et al.  RelB/p52 NF-κB Complexes Rescue an Early Delay in Mammary Gland Development in Transgenic Mice with Targeted Superrepressor IκB-α Expression and Promote Carcinogenesis of the Mammary Gland , 2005, Molecular and Cellular Biology.

[37]  E. Eskelinen Doctor Jekyll and Mister Hyde: autophagy can promote both cell survival and cell death , 2005, Cell Death and Differentiation.

[38]  Laurent Lessard,et al.  Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study , 2005, British Journal of Cancer.

[39]  C. Le Page,et al.  EGFR and Her‐2 regulate the constitutive activation of NF‐kappaB in PC‐3 prostate cancer cells , 2005, The Prostate.

[40]  D. Seldin,et al.  RelB/p52 NF-kappaB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IkappaB-alpha expression and promote carcinogenesis of the mammary gland. , 2005, Molecular and cellular biology.

[41]  Fred Saad,et al.  Nuclear Factor-κB Nuclear Localization Is Predictive of Biochemical Recurrence in Patients with Positive Margin Prostate Cancer , 2004, Clinical Cancer Research.

[42]  C. Sheehan,et al.  Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. , 2004, Clinical cancer research : an official journal of the American Association for Cancer Research.

[43]  L. Lessard,et al.  Expression of NF‐κB in prostate cancer lymph node metastases , 2004 .

[44]  L. Lessard,et al.  Expression of NF-kappaB in prostate cancer lymph node metastases. , 2004, The Prostate.

[45]  L. Lessard,et al.  NF‐κB nuclear localization and its prognostic significance in prostate cancer , 2003 .

[46]  L. Lessard,et al.  NF-kappa B nuclear localization and its prognostic significance in prostate cancer. , 2003, BJU international.

[47]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[48]  S. Schwartz,et al.  A new human prostate carcinoma cell line, 22Rv1 , 1999, In Vitro Cellular & Developmental Biology - Animal.

[49]  P. Dumont,et al.  Unusual behaviour of the LNCaP prostate tumour xenografted in nude mice. , 1993, In vivo.

[50]  C. Dinney,et al.  Metastatic model for human prostate cancer using orthotopic implantation in nude mice. , 1992, Journal of the National Cancer Institute.

[51]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[52]  Y. Oshika,et al.  P-glycoprotein-mediated acquired multidrug resistance of human lung cancer cells in vivo. , 1996, British Journal of Cancer.