Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population

This study establishes that sparse canonical correlation analysis (SCCAN) identifies generalizable, structural MRI-derived cortical networks that relate to five distinct categories of cognition. We obtain multivariate psychometrics from the domain-specific sub-scales of the Philadelphia Brief Assessment of Cognition (PBAC). By using a training and separate testing stage, we find that PBAC-defined cognitive domains of language, visuospatial functioning, episodic memory, executive control, and social functioning correlate with unique and distributed areas of gray matter (GM). In contrast, a parallel univariate framework fails to identify, from the training data, regions that are also significant in the left-out test dataset. The cohort includes164 patients with Alzheimer's disease, behavioral-variant frontotemporal dementia, semantic variant primary progressive aphasia, non-fluent/agrammatic primary progressive aphasia, or corticobasal syndrome. The analysis is implemented with open-source software for which we provide examples in the text. In conclusion, we show that multivariate techniques identify biologically-plausible brain regions supporting specific cognitive domains. The findings are identified in training data and confirmed in test data.

[1]  D. Tritchler,et al.  Sparse Canonical Correlation Analysis with Application to Genomic Data Integration , 2009, Statistical applications in genetics and molecular biology.

[2]  Daniela M Witten,et al.  Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data , 2009, Statistical applications in genetics and molecular biology.

[3]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[4]  Rainer Goebel,et al.  Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns , 2008, NeuroImage.

[5]  Brian B. Avants,et al.  A Unified Image Registration Framework for ITK , 2012, WBIR.

[6]  Frithjof Kruggel,et al.  Empirical derivation of the reference region for computing diagnostic sensitive ¹⁸fluorodeoxyglucose ratios in Alzheimer's disease based on the ADNI sample. , 2012, Biochimica et biophysica acta.

[7]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[8]  Norbert Schuff,et al.  MRI patterns of atrophy and hypoperfusion associations across brain regions in frontotemporal dementia , 2012, NeuroImage.

[9]  Federico Caobelli,et al.  Is long-term prognosis of frontotemporal lobar degeneration predictable by neuroimaging? Evidence from a single-subject functional brain study. , 2012, Journal of Alzheimer's disease : JAD.

[10]  Nick C Fox,et al.  Automatic classification of MR scans in Alzheimer's disease. , 2008, Brain : a journal of neurology.

[11]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[12]  Chris Rorden,et al.  Improving Lesion-Symptom Mapping , 2007, Journal of Cognitive Neuroscience.

[13]  Stephen J. Roberts,et al.  Parametric and non-parametric unsupervised cluster analysis , 1997, Pattern Recognit..

[14]  R D Hill,et al.  The relationship between the mini-mental state examination and cognitive functioning in normal elderly adults: a componential analysis. , 1995, Age and ageing.

[15]  Jonathan E. Taylor,et al.  Interpretable whole-brain prediction analysis with GraphNet , 2013, NeuroImage.

[16]  Jennifer Lynn Whitwell,et al.  The corticobasal syndrome-Alzheimer's , 2011 .

[17]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[18]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[19]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[20]  Johan A. K. Suykens,et al.  Weighted least squares support vector machines: robustness and sparse approximation , 2002, Neurocomputing.

[21]  A Chatterjee,et al.  Neurocognitive contributions to verbal fluency deficits in frontotemporal lobar degeneration , 2009, Neurology.

[22]  Karl J. Friston,et al.  False discovery rate revisited: FDR and topological inference using Gaussian random fields , 2009, NeuroImage.

[23]  F. Bookstein,et al.  A new statistical method for testing hypotheses of neuropsychological/MRI relationships in schizophrenia: partial least squares analysis , 2002, Schizophrenia Research.

[24]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[25]  Morris Moscovitch,et al.  Characterizing spatial and temporal features of autobiographical memory retrieval networks: a partial least squares approach , 2004, NeuroImage.

[26]  B. Miller,et al.  Distinct MRI Atrophy Patterns in Autopsy-Proven Alzheimer's Disease and Frontotemporal Lobar Degeneration , 2008, American journal of Alzheimer's disease and other dementias.

[27]  C. Ghetti,et al.  Visuo-Spatial Imagery Impairment in Posterior Cortical Atrophy: A Cognitive and SPECT Study , 2011, Behavioural neurology.

[28]  B. Dickerson,et al.  MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults , 2012, Neurology.

[29]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[30]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[31]  Brian B. Avants,et al.  Symmetric Diffeomorphic Image Registration: Evaluating Automated Labeling of Elderly and Neurodegenerative Cortex and Frontal Lobe , 2006, WBIR.

[32]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[33]  Michael F. Bonner,et al.  Reversal of the concreteness effect in semantic dementia , 2009, Cognitive neuropsychology.

[34]  Murray Grossman,et al.  The Philadelphia Brief Assessment of Cognition (PBAC): A Validated Screening Measure for Dementia , 2011, The Clinical neuropsychologist.

[35]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[36]  D. Delis,et al.  Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment. , 2012, Journal of Alzheimer's disease : JAD.

[37]  Michael Elad,et al.  L1-L2 Optimization in Signal and Image Processing , 2010, IEEE Signal Processing Magazine.

[38]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[39]  Michael W. Weiner,et al.  Twelve-month metabolic declines in probable Alzheimer's disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: Findings from the Alzheimer's Disease Neuroimaging Initiative , 2010, NeuroImage.

[40]  Yaakov Stern,et al.  Multivariate and univariate neuroimaging biomarkers of Alzheimer's disease , 2008, NeuroImage.

[41]  K. Rankin,et al.  Personality and social cognition in neurodegenerative disease. , 2011, Current opinion in neurology.

[42]  T. Iwatsubo [Alzheimer's disease Neuroimaging Initiative (ADNI)]. , 2011, Nihon rinsho. Japanese journal of clinical medicine.

[43]  Clifford R. Jack,et al.  Predicting Clinical Scores from Magnetic Resonance Scans in Alzheimer's Disease , 2010, NeuroImage.

[44]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[45]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[46]  Steve Cherry,et al.  Singular Value Decomposition Analysis and Canonical Correlation Analysis , 1996 .

[47]  Brian Avants,et al.  Neuroanatomy of Apathy and Disinhibition in Frontotemporal Lobar Degeneration , 2009, Dementia and Geriatric Cognitive Disorders.

[48]  Dinggang Shen,et al.  Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures , 2011, PloS one.

[49]  Stefan Pollmann,et al.  PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data , 2009, Neuroinformatics.

[50]  J. T. Webster,et al.  An Analytic Variable Selection Technique for Principal Component Regression , 1977 .

[51]  Tong Zhang,et al.  Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models , 2008, NIPS.

[52]  Theresa M. Harrison,et al.  Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia , 2011, Neurology.

[53]  Katy A. Cross,et al.  Patterns of neuropsychological impairment in frontotemporal dementia , 2007, Neurology.

[54]  S. Kiaei,et al.  Canonical correlation analysis (CCA) for ARMA spectral estimation , 1989, IEEE International Symposium on Circuits and Systems,.

[55]  Mert R. Sabuncu,et al.  The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction , 2011, MICCAI.

[56]  R. Poldrack Region of interest analysis for fMRI. , 2007, Social cognitive and affective neuroscience.

[57]  J. Hodges,et al.  Focal posterior cingulate atrophy in incipient Alzheimer's disease , 2010, Neurobiology of Aging.

[58]  et al.,et al.  Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline , 2008, NeuroImage.

[59]  J. Gee,et al.  Logical circularity in voxel‐based analysis: Normalization strategy may induce statistical bias , 2014, Human brain mapping.

[60]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[61]  Michael Weiner,et al.  Neuroanatomical correlates of cognitive self-appraisal in neurodegenerative disease , 2010, NeuroImage.

[62]  J. Hodges,et al.  Memory consolidation and the hippocampus: further evidence from studies of autobiographical memory in semantic dementia and frontal variant frontotemporal dementia , 2002, Neuropsychologia.

[63]  Antonio Moreno,et al.  Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares , 2012, NeuroImage.

[64]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[65]  M. Grossman,et al.  Primary Progressive Aphasia: A Review , 2004, Neurocase.

[66]  Arthur Getis,et al.  Spatial Pattern Analysis , 2005 .

[67]  D. Amaral,et al.  Volumetric correlates of spatiotemporal working and recognition memory impairment in aged rhesus monkeys. , 2011, Cerebral cortex.

[68]  Masa-aki Sato,et al.  Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns , 2008, NeuroImage.

[69]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[70]  Clifford R Jack,et al.  Rates of cerebral atrophy differ in different degenerative pathologies. , 2006, Brain : a journal of neurology.

[71]  Philip N. Jefferson A New Statistic , 2012 .

[72]  Keith A Josephs,et al.  The corticobasal syndrome–Alzheimer’s disease conundrum , 2011, Expert review of neurotherapeutics.

[73]  I Litvan,et al.  The FAB: A frontal assessment battery at bedside , 2000, Neurology.

[74]  Tianzi Jiang,et al.  The Neuronal Correlates of Digits Backward Are Revealed by Voxel-Based Morphometry and Resting-State Functional Connectivity Analyses , 2012, PloS one.

[75]  Mark R. T. Dale,et al.  Spatial Pattern Analysis in Plant Ecology: Spatial Pattern Analysis in Plant Ecology , 1999 .

[76]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[77]  Michael Elad,et al.  Why Simple Shrinkage Is Still Relevant for Redundant Representations? , 2006, IEEE Transactions on Information Theory.

[78]  John R Hodges,et al.  A Comparison of the Addenbrooke's Cognitive Examination (ACE), Conventional Neuropsychological Assessment, and Simple MRI-Based Medial Temporal Lobe Evaluation in the Early Diagnosis of Alzheimer's Disease , 2005, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[79]  S. Black,et al.  Brain SPECT imaging and left hemispatial neglect covaried using partial least squares: The sunnybrook stroke study , 1999, Human brain mapping.

[80]  E. Polak,et al.  Family of Projected Descent Methods for Optimization Problems with Simple Bounds , 1997 .

[81]  Alice J. O'Toole,et al.  Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data , 2007, Journal of Cognitive Neuroscience.

[82]  Michael Weiner,et al.  Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects , 2011, NeuroImage.

[83]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[84]  Jieping Ye,et al.  Finite Domain Constraint Solver Learning , 2009, IJCAI.

[85]  Guy B. Williams,et al.  Neural correlates of semantic and behavioural deficits in frontotemporal dementia , 2005, NeuroImage.

[86]  J. Gee,et al.  Why are patients with progressive nonfluent aphasia nonfluent? , 2010, Neurology.

[87]  Ka Yee Yeung,et al.  Principal component analysis for clustering gene expression data , 2001, Bioinform..

[88]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[89]  John Shawe-Taylor,et al.  Sparse canonical correlation analysis , 2009, Machine Learning.

[90]  J. Cummings,et al.  The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment , 2005, Journal of the American Geriatrics Society.

[91]  Brian B. Avants,et al.  An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data , 2011, Neuroinformatics.

[92]  J. V. Haxby,et al.  Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares , 1996, NeuroImage.

[93]  Philippe Besse,et al.  Sparse canonical methods for biological data integration: application to a cross-platform study , 2009, BMC Bioinformatics.

[94]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[95]  Brian B. Avants,et al.  Sparse Unbiased Analysis of Anatomical Variance in Longitudinal Imaging , 2010, MICCAI.

[96]  Kaustubh Supekar,et al.  Sparse logistic regression for whole-brain classification of fMRI data , 2010, NeuroImage.

[97]  Richard J. Caselli,et al.  Linking functional and structural brain images with multivariate network analyses: A novel application of the partial least square method , 2009, NeuroImage.

[98]  Guinevere F. Eden,et al.  Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies , 2003, NeuroImage.

[99]  Brian B. Avants,et al.  The optimal template effect in hippocampus studies of diseased populations , 2010, NeuroImage.

[100]  J L Mathias,et al.  Neuropsychological deficits in frontotemporal dementia and Alzheimer’s disease: a meta-analytic review , 2007, Journal of Neurology, Neurosurgery & Psychiatry.