Random networks: eigenvalue spectra

We analyze the spectra of eigenvalues for random graphs with a local tree-like structure. The exact equations to the spectra of networks with a local tree-like structure are presented. We propose a simple approximation, and in the framework of effective medium approximation, calculate spectra of various graphs analytically. We show that spectra of locally tree-like random graphs gives a good description of the spectral properties of real-life networks like the Internet.

[1]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[2]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[3]  S. Strogatz Exploring complex networks , 2001, Nature.

[4]  R. Monasson Diffusion, localization and dispersion relations on “small-world” lattices , 1999 .

[5]  Thomas Erlebach,et al.  On the Spectrum and Structure of Internet Topology Graphs , 2002, IICS.

[6]  S. N. Dorogovtsev,et al.  Spectra of complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[8]  Rodgers,et al.  Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.

[9]  Michalis Faloutsos,et al.  Power laws and the AS-level internet topology , 2003, TNET.

[10]  K. Goh,et al.  Spectra and eigenvectors of scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[12]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[13]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[14]  Z. Neda,et al.  Networks in life: Scaling properties and eigenvalue spectra , 2002, cond-mat/0303106.

[15]  Guilhem Semerjian,et al.  Sparse random matrices: the eigenvalue spectrum revisited , 2002 .

[16]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[17]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.