Topological Recognition of Critical Transitions in Time Series of Cryptocurrencies

We analyze the time series of four major cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple) before the digital market crash at the end of 2017 - beginning 2018. We introduce a methodology that combines topological data analysis with a machine learning technique -- $k$-means clustering -- in order to automatically recognize the emerging chaotic regime in a complex system approaching a critical transition. We first test our methodology on the complex system dynamics of a Lorenz-type attractor, and then we apply it to the four major cryptocurrencies. We find early warning signals for critical transitions in the cryptocurrency markets, even though the relevant time series exhibit a highly erratic behavior.

[1]  P. Y. Lum,et al.  Extracting insights from the shape of complex data using topology , 2013, Scientific Reports.

[2]  Mark R. Muldoon,et al.  Topology from time series , 1993 .

[3]  Pawel Dlotko,et al.  A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..

[4]  Firas A. Khasawneh,et al.  Topological data analysis for true step detection in periodic piecewise constant signals , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Konstantin Mischaikow,et al.  Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology , 2015, 1505.06168.

[6]  Francesco Ravazzolo,et al.  Forecasting Cryptocurrencies Financial Time Series , 2018 .

[7]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[8]  Hajo Holzmann,et al.  A likelihood ratio test for bimodality in two-component mixtures with application to regional income distribution in the EU , 2008 .

[9]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[10]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[11]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[12]  Jose A. Perea,et al.  SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data , 2015, BMC Bioinformatics.

[13]  Frédéric Chazal,et al.  Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..

[14]  S. Carpenter,et al.  Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data , 2012, PloS one.

[15]  F. Takens Detecting strange attractors in turbulence , 1981 .

[16]  Mikael Vejdemo-Johansson,et al.  Automatic recognition and tagging of topologically different regimes in dynamical systems , 2013, ArXiv.

[17]  Jesse Berwald,et al.  Critical Transitions In a Model of a Genetic Regulatory System , 2013, ArXiv.

[18]  David S. Broomhead,et al.  Delay Embeddings for Forced Systems. II. Stochastic Forcing , 2003, J. Nonlinear Sci..

[19]  Zbigniew R. Struzik,et al.  Dynamic bifurcations on financial markets , 2016 .

[20]  Ludovico Minati,et al.  Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects , 2018, Chaos.

[21]  Firas A. Khasawneh,et al.  Chatter detection in turning using persistent homology , 2016 .

[22]  Lerong Lu,et al.  Bitcoin: Speculative Bubble, Financial Risk and Regulatory Response , 2018 .

[23]  S. Carpenter,et al.  Anticipating Critical Transitions , 2012, Science.

[24]  Leopoldo Catania,et al.  Modelling Crypto-Currencies Financial Time-Series , 2017 .

[25]  V. Guttal,et al.  Changing skewness: an early warning signal of regime shifts in ecosystems. , 2008, Ecology letters.

[26]  Didier Sornette,et al.  Dissection of Bitcoin’s multiscale bubble history from January 2012 to February 2018 , 2018, Royal Society Open Science.

[27]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[28]  Dmitry Turaev,et al.  Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.

[29]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[30]  J. Meiss,et al.  Exploring the topology of dynamical reconstructions , 2015, 1506.01128.

[31]  R. Adler,et al.  Persistent homology for random fields and complexes , 2010, 1003.1001.

[32]  Marian Gidea,et al.  Topology Data Analysis of Critical Transitions in Financial Networks , 2017, 1701.06081.

[33]  S. Nadarajah,et al.  A Statistical Analysis of Cryptocurrencies , 2017 .

[34]  S. Nadarajah,et al.  GARCH Modelling of Cryptocurrencies , 2017 .

[35]  Jun-ichi Inoue,et al.  On the non-stationarity of financial time series: impact on optimal portfolio selection , 2012, 1205.0877.

[36]  H. Eugene Stanley,et al.  Identifying States of a Financial Market , 2012, Scientific Reports.

[37]  Timothy M. Lenton,et al.  A modified method for detecting incipient bifurcations in a dynamical system , 2007 .

[38]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[39]  J. D. Farmer,et al.  A Theory of State Space Reconstruction in the Presence of Noise , 1991 .

[40]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[41]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[42]  Marian Gidea,et al.  Topological Data Analysis of Financial Time Series: Landscapes of Crashes , 2017 .

[43]  Thorsten V. Koeppl,et al.  The Economics of Cryptocurrencies – Bitcoin and Beyond , 2017, Canadian Journal of Economics/Revue canadienne d'économique.

[44]  Matthew Berger,et al.  On Time-Series Topological Data Analysis: New Data and Opportunities , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).