Some pyramid techniques for image segmentation

This paper describes a collection of multiresolution, or “pyramid”, techniques for rapidly extracting global structures (features, regions, patterns) from an image. If implemented in parallel on suitable cellular pyramid hardware, these techniques require processing times on the order of the logarithm of the image diameter.

[1]  D. C. Beardslee,et al.  Readings in perception , 1958 .

[2]  Tom N. Cornsweet,et al.  III – THE PHYSICS OF LIGHT , 1970 .

[3]  Jack Sklansky,et al.  The Detection and Segmentation of Blobs in Infrared Images , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Stanley M. Dunn,et al.  Bimean clustering , 1983, Pattern Recognit. Lett..

[5]  Azriel Rosenfeld,et al.  Using pyramids to detect good continuation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Azriel Rosenfeld,et al.  Albedo estimation for scene segmentation , 1983, Pattern Recognit. Lett..

[7]  Michael Shneier,et al.  Extracting Compact Objects Using Linked Pyramids , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[9]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .

[10]  David B. Cooper,et al.  Bayesian Recognition of Local 3-D Shape by Approximating Image Intensity Functions with Quadric Polynomials , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  S. Levialdi Integrated technology for parallel image processing , 1985 .

[12]  Ralph Hartley,et al.  Segmentation of optical flow fields by pyramid linking , 1985, Pattern Recognit. Lett..