Systematic Investigation on Polymer Layer Selection for Flexible Thin Film Encapsulation

[1]  Junmo Kim,et al.  Hydrogen-assisted low-temperature plasma-enhanced chemical vapor deposition of thin film encapsulation layers for top-emission organic light-emitting diodes , 2021 .

[2]  K. Cao,et al.  Flexible PDMS/Al2O3 Nanolaminates for the Encapsulation of Blue OLEDs , 2021, Advanced Materials Interfaces.

[3]  A. Zakhidov,et al.  Improvements of Organic Light‐Emitting Diodes Using Graphene as an Emerging and Efficient Transparent Conducting Electrode Material , 2021, Advanced Optical Materials.

[4]  Jrjyan Jerry Chen Realizing Thin‐Film Encapsulation's Benefits for Large‐Scale OLED Panels , 2021, Information Display.

[5]  Sang-Woo Kim,et al.  Folding-stability criteria of thin-film encapsulation layers for foldable organic light-emitting diodes , 2020 .

[6]  M. Gather,et al.  A substrateless, flexible, and water-resistant organic light-emitting diode , 2020, Nature Communications.

[7]  K. Choi,et al.  Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs , 2020, Nano Research.

[8]  S. Yoo,et al.  Organic Light‐Emitting Diodes: Pushing Toward the Limits and Beyond , 2020, Advanced materials.

[9]  Seung-Min Shin,et al.  A single gas barrier layer of high-density Al2O3 formed by neutral beam-assisted sputtering at room temperature , 2019, Thin Solid Films.

[10]  K. Choi,et al.  Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers. , 2018, ACS applied materials & interfaces.

[11]  John X. J. Zhang,et al.  Mechanical transducers: Cantilevers, acoustic wave sensors, and thermal sensors , 2019, Molecular Sensors and Nanodevices.

[12]  Alessandro Mattoni,et al.  Hydrophilicity and Water Contact Angle on Methylammonium Lead Iodide , 2018, Advanced Materials Interfaces.

[13]  Jin-seong Park,et al.  Review of Organic/Inorganic Thin Film Encapsulation by Atomic Layer Deposition for a Flexible OLED Display , 2018, JOM.

[14]  Shi-jian Su,et al.  Marching Toward Highly Efficient, Pure‐Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light‐Emitting Diodes , 2018, Advanced Functional Materials.

[15]  Y. Duan,et al.  Atomic Layer Deposition: Effect of Various Oxidants on Reaction Mechanisms, Self-Limiting Natures and Structural Characteristics of Al2 O3 Films Grown by Atomic Layer Deposition (Adv. Mater. Interfaces 14/2018) , 2018, Advanced Materials Interfaces.

[16]  S. Nie,et al.  Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers , 2018, RSC advances.

[17]  K. Choi,et al.  Functional Design of Highly Robust and Flexible Thin-Film Encapsulation Composed of Quasi-Perfect Sublayers for Transparent, Flexible Displays. , 2017, ACS applied materials & interfaces.

[18]  K. Oksman,et al.  Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications , 2017, Cellulose.

[19]  N. K. Shrestha,et al.  UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers , 2017 .

[20]  Duan Yu,et al.  Recent progress on thin-film encapsulation technologies for organic electronic devices , 2016 .

[21]  J. Jur,et al.  Mechanisms and reactions during atomic layer deposition on polymers , 2013 .

[22]  Yun Cheol Han,et al.  Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials , 2013 .

[23]  Yun Cheol Han,et al.  A flexible moisture barrier comprised of a SiO2-embedded organic–inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs , 2013 .

[24]  E. Chang,et al.  Characterizations of Al2O3/ZnO Grown on Si Substrate by Plasma Enhanced Atomic Layer Deposition , 2013 .

[25]  S. Spirk,et al.  Creating water vapor barrier coatings from hydrophilic components. , 2012, ACS applied materials & interfaces.

[26]  P. Chou,et al.  Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. , 2010, Chemical Society reviews.

[27]  Jerzy Kanicki,et al.  Thin-Film Encapsulation of Organic Light-Emitting Devices , 2007 .

[28]  Helmut Neugebauer,et al.  A new encapsulation solution for flexible organic solar cells , 2006 .

[29]  Bernard Geffroy,et al.  Organic light‐emitting diode (OLED) technology: materials, devices and display technologies , 2006 .

[30]  C. Lim,et al.  Surface Green function for a soft elastic half-space: Influence of surface stress , 2006 .

[31]  Chi-Sun Hwang,et al.  Ultrathin Film Encapsulation of an OLED by ALD , 2005 .

[32]  H. Kinoshita,et al.  Chemical vapor deposition of SiO2 films by TEOS/O2 supermagnetron plasma , 2004 .

[33]  T. Ogino,et al.  Erratum: Alternative to the Shuttleworth formulation of solid surface stress [Phys. Rev. B 63 , 165412 (2001)] , 2004 .

[34]  Ying-Lang Wang,et al.  Effect of substrate on the step coverage of plasma-enhanced chemical-vapor deposited tetraethylorthosilicate films , 2003 .

[35]  P. Schiller,et al.  Interaction of colloidal molecules adsorbed on soft solid films , 2001 .

[36]  S. Forrest,et al.  VERY HIGH-EFFICIENCY GREEN ORGANIC LIGHT-EMITTING DEVICES BASED ON ELECTROPHOSPHORESCENCE , 1999 .

[37]  L. Macdowell,et al.  Sources of surface contamination affecting electrical characteristics of semiconductors , 1987 .