Ultrafast laser induced electronic and structural modifications in bulk fused silica

Ultrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission ...

[1]  A. Rode,et al.  Observation of O 2 inside voids formed in GeO 2 glass by tightly-focused fs-laser pulses , 2011 .

[2]  John Canning,et al.  Anatomy of a femtosecond laser processed silica waveguide [Invited] , 2011 .

[3]  Masaaki Sakakura,et al.  Manipulation of optical anisotropy in silica glass [Invited] , 2011 .

[4]  Peter G. Kazansky,et al.  Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited] , 2011 .

[5]  Saulius Juodkazis,et al.  Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited] , 2011 .

[6]  Leonid Glebov,et al.  Optical detection of attosecond ionization induced by a few-cycle laser field in a transparent dielectric material. , 2011, Physical review letters.

[7]  Razvan Stoian,et al.  Time-resolved imaging of laser-induced refractive index changes in transparent media. , 2011, The Review of scientific instruments.

[8]  I. M. Burakov,et al.  Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica. , 2010, Optics express.

[9]  E Audouard,et al.  Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass. , 2009, Optics express.

[10]  E Audouard,et al.  Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. , 2009, Optics express.

[11]  Razvan Stoian,et al.  Dynamics of femtosecond laser induced voidlike structures in fused silica , 2009 .

[12]  E Barthel,et al.  Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses. , 2008, Optics express.

[13]  Peter G. Kazansky,et al.  Self-assembled sub-wavelength structures and form birefringence created by femtosecond laser writing in glass: properties and applications , 2008 .

[14]  Stephen Ho,et al.  Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.

[15]  M. Tomozawa,et al.  Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy , 2008 .

[16]  R. Taylor,et al.  Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass , 2008 .

[17]  Carl W. Ponader,et al.  Origin of the refractive-index increase in laser-written waveguides in glasses , 2008 .

[18]  James W. Chan,et al.  Spectroscopic characterization of different femtosecond laser modification regimes in fused silica , 2007 .

[19]  V. Tikhonchuk,et al.  Conical forward THz emission from femtosecond-laser-beam filamentation in air. , 2007, Physical review letters.

[20]  Razvan Stoian,et al.  Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses , 2007 .

[21]  B. Schmidt,et al.  Multimodal electronic–vibronic spectra of luminescence in ion-implanted silica layers , 2007 .

[22]  Martin Richardson,et al.  Laser-induced defects in fused silica by femtosecond IR irradiation , 2006 .

[23]  Saulius Juodkazis,et al.  Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation , 2006 .

[24]  P. Corkum,et al.  Optically produced arrays of planar nanostructures inside fused silica. , 2006, Physical review letters.

[25]  A. Shluger,et al.  Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations , 2005 .

[26]  Arnaud Couairon,et al.  Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses , 2005 .

[27]  John C. Lambropoulos,et al.  UV-laser-induced densification of fused silica: a molecular dynamics study , 2004 .

[28]  H. Urey Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams. , 2004, Applied optics.

[29]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[30]  K. Awazu,et al.  Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses , 2003 .

[31]  Stavros G. Demos,et al.  Optical defects produced in fused silica during laser-induced breakdown , 2003 .

[32]  Thomas R Huser,et al.  Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses , 2003 .

[33]  Jeremy J Baumberg,et al.  Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. , 2002, Optics letters.

[34]  Nicholas F. Borrelli,et al.  Study of femtosecond-laser-written waveguides in glasses , 2002 .

[35]  R. Hochstrasser,et al.  Intense terahertz pulses by four-wave rectification in air. , 2000, Optics letters.

[36]  L. Skuja,et al.  OPTICAL PROPERTIES OF DEFECTS IN SILICA , 2000 .

[37]  A. Pineda,et al.  POINT DEFECTS IN Si-SiO 2 SYSTEMS: CURRENT UNDERSTANDING , 2000 .

[38]  Razvan Stoian,et al.  Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation , 1999 .

[39]  Saulius Juodkazis,et al.  Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica , 1999 .

[40]  K Miura,et al.  Writing Waveguides and Gratings in Silica and Related Materials by Femto-Second Laser , 1998, Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals.

[41]  Alfredo Pasquarello,et al.  Identification of Raman defect lines as signatures of ring structures in vitreous silica , 1998 .

[42]  G. Pacchioni,et al.  Ab initio theory of optical transitions of point defects in SiO 2 , 1998 .

[43]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[44]  William G. Oldham,et al.  Ultraviolet-induced densification in fused silica , 1997 .

[45]  J. Duraud,et al.  Amorphization of α-Quartz under Irradiation , 1996 .

[46]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[47]  Y. Ohki,et al.  Visible photoluminescence from Si clusters in γ‐irradiated amorphous SiO2 , 1996 .

[48]  Linards Skuja,et al.  Correlation between the radiation‐induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glassy SiO2 , 1996 .

[49]  I. Mansour,et al.  An improved procedure to calculate the refractive index profile from the measured near-field intensity , 1996 .

[50]  Y. Liu,et al.  Time-dependent second-harmonic generation from the Si-SiO(2) interface induced by charge transfer. , 1995, Optics letters.

[51]  Martin,et al.  Space-time observation of an electron gas in SiO2. , 1994, Physical review letters.

[52]  Greene,et al.  Primary relaxation processes at the band edge of SiO2. , 1993, Physical review letters.

[53]  G. Petite,et al.  Femtosecond multiphoton generation of the self‐trapped exciton in α‐SiO2 , 1992 .

[54]  Friebele,et al.  Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E' centers, and a triplet state. , 1986, Physical review. B, Condensed matter.

[55]  G. Walrafen,et al.  Raman Structural Correlations from Stress-Modified and Bombarded Vitreous Silica , 1986 .

[56]  R. A. Barrio,et al.  Vibrational decoupling of rings in amorphous solids , 1984 .

[57]  Yaochun Shen Principles of nonlinear optics , 1984 .

[58]  A. E. Geissberger,et al.  Raman studies of vitreous Si O 2 versus fictive temperature , 1983 .

[59]  J. Robertson,et al.  Theory of defects in vitreous silicon dioxide , 1983 .

[60]  A. Edwards,et al.  Theory of the peroxy-radical defect in a -Si O 2 , 1982 .

[61]  D. Bethune,et al.  Optical second-harmonic generation in atomic vapors with focused beams , 1981 .

[62]  E. Friebele,et al.  Fundamental defect centers in glass : The peroxy radical in irradiated high-purity fused silica , 1979 .

[63]  F. L. Galeener,et al.  Band limits and the vibrational spectra of tetrahedral glasses , 1979 .

[64]  G. Schulz,et al.  STRUCTURE OF O . , 1970 .

[65]  J. Rolfe,et al.  Optical Absorption and Fluorescence of Oxygen in Alkali Halide Crystals , 1961 .

[66]  A. Q. Tool,et al.  RELATION BETWEEN INELASTIC DEFORMABILITY AND THERMAL EXPANSION OF GLASS IN ITS ANNEALING RANGE , 1946 .