The Li-Yau inequality and applications under a curvature-dimension condition
暂无分享,去创建一个
[1] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[2] A. Mondino,et al. Li–Yau and Harnack type inequalities in RCD∗(K,N) metric measure spaces , 2013, 1306.0494.
[3] N. Garofalo. Curvature-dimension inequalities and Li-Yau inequalities in sub-Riemannian spaces , 2013, 1301.6581.
[4] Paul W. Y. Lee. Generalized Li-Yau estimates and Huisken's monotonicity formula , 2012, 1211.5559.
[5] B. Qian. A generalization of Hamilton’s gradient estimate☆ , 2012 .
[6] Z. Qian,et al. Sharp spectral gap and Li–Yau’s estimate on Alexandrov spaces , 2011, 1102.4159.
[7] S. Varadhan. On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .
[8] Feng-Yu Wang. GRADIENT AND HARNACK INEQUALITIES ON NONCOMPACT MANIFOLDS WITH BOUNDARY , 2010 .
[9] Fabrice Baudoin,et al. Perelman’s Entropy and Doubling Property on Riemannian Manifolds , 2009, 0911.1819.
[10] Xiangjin Xu,et al. Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation☆ , 2009, 0901.3849.
[11] C. Villani. Optimal Transport: Old and New , 2008 .
[12] Michel Ledoux,et al. A logarithmic Sobolev form of the Li-Yau parabolic inequality , 2006 .
[13] Qi S. Zhang,et al. Sharp Gradient Estimate and Yau's Liouville Theorem for the Heat Equation on Noncompact Manifolds , 2005, math/0502079.
[14] C. Villani. Topics in Optimal Transportation , 2003 .
[15] T. K. Carne. HEAT KERNELS AND SPECTRAL THEORY: (Cambridge Tracts in Mathematics 92) , 1990 .
[16] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[17] B. Qian. Remarks on differential Harnack inequalities , 2014 .
[18] Laboratoire de Probabilités et Modèles Aléatoires, , 2008 .
[19] D. Bakry,et al. Harnack inequalities on a manifold with positive or negative Ricci curvature , 1999 .
[20] S. Yau. Harnack inequality for non-self-adjoint evolution equations , 1995 .
[21] S. Yau. On the Harnack inequalities of partial differential equations , 1994 .
[22] R. Hamilton. Matrix Harnack estimate for the heat equation , 1993 .
[23] E. Davies,et al. Heat kernels and spectral theory , 1989 .