Graph Powers

The investigation of the asymptotic behaviour of various parameters of powers of a fixed graph leads to many fascinating problems, some of which are motivated by questions in information theory, communication complexity, geometry and Ramsey theory. In this survey we discuss these problems and describe the techniques used in their study which combine combinatorial, geometric, probabilistic and linear-algebra tools.

[1]  Fan Chung Graham,et al.  Open problems of Paul Erdös in graph theory , 1997, J. Graph Theory.

[2]  Gena Hahn,et al.  On the ultimate independence ratio of a graph , 1995, Eur. J. Comb..

[3]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[4]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[5]  Noga Alon,et al.  Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems , 1991, J. Comb. Theory, Ser. A.

[6]  R. McEliece,et al.  Hide and Seek, Data Storage, and Entropy , 1971 .

[7]  S. Konyagin Systems of vectors in Euclidean space and an extremal problem for polynomials , 1981 .

[8]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[9]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[10]  János Körner,et al.  On Clique Growth in Products of Directed Graphs , 1998, Graphs Comb..

[11]  N. Alon,et al.  Repeated communication and Ramsey graphs , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[12]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[13]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[14]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[15]  Luisa Gargano,et al.  Capacities: From Information Theory to Extremal Set Theory , 1994, J. Comb. Theory, Ser. A.

[16]  A. Blokhuis On the Sperner Capacity of the Cyclic Triangle , 1993 .

[17]  Kenneth Rose,et al.  On zero-error coding of correlated sources , 2003, IEEE Trans. Inf. Theory.

[18]  Béla Bollobás,et al.  Random Graphs , 1985 .

[19]  Robert J. McEliece,et al.  Ramsey bounds for graph products , 1971 .

[20]  Ferenc Juhász,et al.  The asymptotic behaviour of lovász’ ϑ function for random graphs , 1982, Comb..

[21]  Noga Alon On the Capacity of Digraphs , 1998, Eur. J. Comb..

[22]  H. S. WITSENHAUSEN,et al.  The zero-error side information problem and chromatic numbers (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[23]  Gábor Simonyi,et al.  Orientations of Self-complementary Graphs and the Relation of Sperner and Shannon Capacities , 1999, Eur. J. Comb..

[24]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1993, STOC.

[25]  Miklós Simonovits,et al.  The coloring numbers of the direct product of two hypergraphs , 1974 .

[26]  Alon Orlitsky,et al.  Worst-case interactive communication I: Two messages are almost optimal , 1990, IEEE Trans. Inf. Theory.

[27]  Uriel Feige,et al.  Randomized graph products, chromatic numbers, and Lovasz j-function , 1995, STOC '95.

[28]  Harold Fredricksen Schur Numbers and the Ramsey Numbers N(3, 3, ..., 3; 2) , 1979, J. Comb. Theory, Ser. A.

[29]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[30]  László Lovász,et al.  Approximating clique is almost NP-complete , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[31]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[32]  B. S. Kashin,et al.  On systems of vectors in a Hilbert space , 1981 .

[33]  R. Greenwood,et al.  Combinatorial Relations and Chromatic Graphs , 1955, Canadian Journal of Mathematics.

[34]  Andrew Thomason,et al.  Multiplicities of subgraphs , 1996, Comb..

[35]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[36]  Geoffrey Exoo,et al.  A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers , 1994, Electron. J. Comb..

[37]  Pavel Pudlák,et al.  Some structural properties of low-rank matrices related to computational complexity , 2000, Theor. Comput. Sci..

[38]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[39]  Stefan A. Burr,et al.  On the Ramsey multiplicities of graphs - problems and recent results , 1980, J. Graph Theory.

[40]  P. Frankl,et al.  Sets of Vectors with Many Orthogonal Pairs , 1992 .

[41]  Willem H. Haemers,et al.  On Some Problems of Lovász Concerning the Shannon Capacity of a Graph , 1979, IEEE Trans. Inf. Theory.

[42]  Andrew Thomason Graph products and monochromatic multiplicities , 1997, Comb..

[43]  Noga Alon,et al.  The Shannon Capacity of a Union , 1998, Comb..

[44]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[45]  Carsten Lund,et al.  Proof verification and the intractability of approximation problems , 1992, FOCS 1992.

[46]  E. Capone Hide and Seek , 1991 .

[47]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[48]  Prasad Tetali,et al.  Concentration of Measure for Products of Markov Kernels and Graph Products via Functional Inequalities , 2001, Combinatorics, Probability and Computing.

[49]  Gábor Simonyi,et al.  A Sperner-Type Theorem and Qualitative Independence , 1992, J. Comb. Theory, Ser. A.

[50]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, Inf. Comput..

[51]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[52]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[53]  Nathan Linial,et al.  Graph products and chromatic numbers , 1989, 30th Annual Symposium on Foundations of Computer Science.

[54]  Uriel Feige,et al.  Randomized graph products, chromatic numbers, and the Lovász ϑ-function , 1997, Comb..

[55]  Noga Alon,et al.  An Asymptotic Isoperimetric Inequality , 1998 .