Perverse sheaves on varieties with large fundamental groups

We conjecture that any perverse sheaf on a compact aspherical Kähler manifold has non-negative Euler characteristic. This extends the Singer-Hopf conjecture in the Kähler setting. We verify the stronger conjecture when the manifold X has non-positive sectional curvature. We also show that the conjecture holds when X is projective and in possession of a faithful semi-simple rigid local system. The first result is proved by expressing the Euler characteristic as an intersection number involving the characteristic cycle, and then using the curvature conditions to deduce non-negativity. For the second result, we have that the local system underlies a complex variation of Hodge structure. We then deduce the desired inequality from the curvature properties of the image of the period map.

[1]  P. Griffiths Hermitian differential geometry, Chern classes, and positive vector bundles , 2015 .

[2]  B. Totaro,et al.  Symmetric differentials and the fundamental group , 2012, 1204.6443.

[3]  M. Kashiwara Index theorem for constructible sheaves , 1985 .

[4]  Michael Schneider,et al.  Compact complex manifolds with numerically effective tangent bundles , 1994 .

[5]  M. Gromov Kähler hyperbolicity and $L_2$-Hodge theory , 1991 .

[6]  J. Jost,et al.  Vanishing theorems for L^2-cohomology on infinite coverings of compact Kahler manifolds and applications in algebraic geometry , 2000 .

[7]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[8]  W. Fulton,et al.  Positive polynomials for ample vector bundles , 1983 .

[9]  M. Raghunathan Cohomology of arithmetic subgroups of algebraic groups: II , 1967 .

[10]  Jianguo Cao,et al.  Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature , 2001 .

[11]  William Fulton,et al.  Intersection theory, Second Edition , 1998, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[12]  C. Simpson Higgs bundles and local systems , 1992 .

[13]  H. Esnault,et al.  Cohomologically rigid local systems and integrality , 2017, 1711.06436.

[14]  J. Kollár Shafarevich Maps and Automorphic Forms , 1995 .

[15]  A. Dimca Sheaves in Topology , 2004 .

[16]  J. Carlson,et al.  Period Mappings and Period Domains , 2017 .

[17]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[18]  A. Sommese,et al.  Complex Differential Geometry , 1985 .

[19]  E. Ballico,et al.  Classification of Irregular Varieties , 1992 .

[20]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .