A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference

A resistorless high-precision compensated CMOS bandgap voltage reference (BGR), which is compatible with a standard CMOS process, is presented in this paper. A higher-order curvature correction method called base-emitter voltage linearization is adapted to directly compensate the thermal nonlinearity of base–emitter voltage. With proper mathematical operations of high-order temperature currents, most of the nonlinear temperature terms in <inline-formula> <tex-math notation="LaTeX">$V_{\mathrm {BE}}$ </tex-math></inline-formula> can be greatly eliminated. The proposed BGR, which is implemented in 0.35-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS technology, is capable of working down to 2 V supply voltages with 1.14055 V mean output voltage. A minimum temperature coefficient of 1.01 ppm/°C with a temperature range from −40 °C to 125 °C is realized, and a power-supply noise attenuation of 61 dB is achieved without any filter capacitors. The line regulation is better than 2 mV/V from 2 V to 5 V supply voltage while dissipating a maximum supply current of <inline-formula> <tex-math notation="LaTeX">$33~\mu \text{A}$ </tex-math></inline-formula>. The active area of the presented BGR is 180 <inline-formula> <tex-math notation="LaTeX">$\mu \text {m}\times 220\,\,\mu \text{m}$ </tex-math></inline-formula>.

[1]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[2]  Bradford L. Hunter,et al.  A ± 3 ppm/°C Single-Trim Switched Capacitor Bandgap Reference for Battery Monitoring Applications , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Li Zhu,et al.  BiCMOS-Based Compensation: Toward Fully Curvature-Corrected Bandgap Reference Circuits , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Gyudong Kim,et al.  Exponential curvature-compensated BiCMOS bandgap references , 1994, IEEE J. Solid State Circuits.

[5]  Fengqi Yu,et al.  A Novel 1.2–V 4.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  T. R. Viswanathan,et al.  A Low-Supply-Voltage CMOS Sub-Bandgap Reference , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Bo Zhang,et al.  A resistorless CMOS bandgap reference with low temperature coefficient and high PSRR , 2012 .

[8]  Xia Wang,et al.  A Resistorless Low-Power Voltage Reference , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Wei Shu,et al.  A 5.6 ppm/°C Temperature Coefficient, 87-dB PSRR, Sub-1-V Voltage Reference in 65-nm CMOS Exploiting the Zero-Temperature-Coefficient Point , 2017, IEEE Journal of Solid-State Circuits.

[10]  Ze-kun Zhou,et al.  A CMOS Voltage Reference Based on Mutual Compensation of Vtn and Vtp , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Tor Sverre Lande,et al.  A Sub-Bandgap Reference Circuit With an Inherent Curvature-Compensation Property , 2014 .

[12]  Ming-Dou Ker,et al.  New Curvature-Compensation Technique for CMOS Bandgap Reference With Sub-1-V Operation , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Carlos Christoffersen,et al.  Nanopower, Sub-1 V, CMOS Voltage References With Digitally-Trimmable Temperature Coefficients , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Guanhua Wang,et al.  A 0.4-V Wide Temperature Range All-MOSFET Subthreshold Voltage Reference With 0.027%/V Line Sensitivity , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Dongsheng Ma,et al.  A Sub-1-V Low-Noise Bandgap Voltage Reference , 2007, IEEE Journal of Solid-State Circuits.

[16]  Chenming Hu,et al.  A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[17]  Guanhua Wang,et al.  A Low-Power High-PSRR CMOS Voltage Reference with Active-Feedback Frequency Compensation for IoT Applications , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[18]  P.R. Gray,et al.  A precision curvature-compensated CMOS bandgap reference , 1983, IEEE Journal of Solid-State Circuits.

[19]  Jianghua Chen,et al.  A High Precision Curvature Compensated Bandgap Reference without Resistors , 2006, 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.

[20]  Gabriel A. Rincon-Mora,et al.  A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference , 1998, IEEE J. Solid State Circuits.

[21]  Ka Nang Leung,et al.  A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference , 2003, IEEE J. Solid State Circuits.

[22]  Wing-Hung Ki,et al.  CMOS Bandgap References With Self-Biased Symmetrically Matched Current–Voltage Mirror and Extension of Sub-1-V Design , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[23]  Ali Far A 220nA bandgap reference with 80dB PSRR targeting energy harvesting , 2016, 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE).

[24]  R. Dobkin,et al.  A curvature corrected micropower voltage reference , 1981, 1981 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[25]  Steffen Paul,et al.  Temperature-Compensated $\beta$ -Multiplier Current Reference Circuit , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  C. Popa,et al.  Optimal curvature-compensated BiCMOS bandgap reference , 2001, ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat..

[27]  Anthony Chan Carusone,et al.  A Nano-Watt MOS-Only Voltage Reference With High-Slope PTAT Voltage Generators , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[28]  Wenceslas Rahajandraibe,et al.  Second-order compensated bandgap reference with convex correction , 2005 .

[29]  Yue-Fang Kuo,et al.  A 1.8- V High-Precision Compensated CMOS Bandgap Reference , 2005, 2005 IEEE Conference on Electron Devices and Solid-State Circuits.

[30]  I. M. Filanovsky,et al.  BiCMOS cascaded bandgap voltage reference , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.

[31]  Wei-Chih Chen,et al.  A Sub-1 ppm/°C Precision Bandgap Reference With Adjusted-Temperature-Curvature Compensation , 2017, IEEE Transactions on Circuits and Systems Part 1: Regular Papers.

[32]  Abdelhalim Bendali,et al.  A 1-V CMOS Current Reference With Temperature and Process Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[33]  Xi Qu,et al.  A Resistorless CMOS Voltage Reference Based on Mutual Compensation of $V_{T}$ and $V_{\rm TH}$ , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  T. R. Viswanathan,et al.  A CMOS bandgap reference without resistors , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[35]  David Blaauw,et al.  A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT Systems , 2017, IEEE Journal of Solid-State Circuits.

[36]  Edgar Sánchez-Sinencio,et al.  An All-MOSFET Voltage Reference With −50-dB PSR at 80 MHz for Low-Power SoC Design , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.