A posteriori error estimations of some cell-centered finite volume methods

This paper presents the natural framework to residual based a posteriori error estimation of some cell-centered finite volume methods for the Laplace equation in $\R^d, d=2$ or 3. For that purpose we associate with the finite volume solution a reconstructed approximation, which is a kind of Morley interpolant. The error is then the difference between the exact solution and this Morley interpolant. The residual error estimator is based on the jump of normal and tangential derivatives of the Morley interpolant. We then prove the equivalence between the discrete H1 seminorm of the error and the residual error estimator. Numerical tests confirm our theoretical results.

[1]  Amal Bergam,et al.  Estimateurs a posteriori d'un schéma de volumes finis pour un problème non linéaire , 2000 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  E. Süli,et al.  A dual graph-norm refinement indicator for finite volume approximations of the Euler equations , 1998 .

[4]  Rüdiger Verfürth,et al.  A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem , 2004, Numerical Algorithms.

[5]  G. Kunert Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes , 1998 .

[6]  S. Nicaise A posteriori residual error estimation of a cell-centered finite volume method , 2004 .

[7]  Gerd Kunert,et al.  A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes , 2001, SIAM J. Numer. Anal..

[8]  Serge Nicaise,et al.  A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems , 2006, SIAM J. Numer. Anal..

[9]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[10]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .

[11]  Gert Lube,et al.  Stabilized Galerkin methods and layer-adapted grids for elliptic problems , 1998 .

[12]  Yves Coudière,et al.  Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes , 2000 .

[13]  M. Ohlberger,et al.  A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.

[14]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[15]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[16]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[17]  Stanimire Tomov,et al.  A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations , 2002 .

[18]  Serge Nicaise,et al.  Some refined Finite volume methods for elliptic problems with corner singularities , 2003 .

[19]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[20]  Mario Ohlberger,et al.  A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..

[21]  Jérôme Droniou Error estimates for the convergence of a finite volume discretization of convection-diffusion equations , 2003 .

[22]  Gerd Kunert A posteriori error estimation for convection dominated problems on anisotropic meshes , 2003 .

[23]  T. Apel,et al.  Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .

[24]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[25]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[26]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[27]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[28]  Endre Süli,et al.  A posteriori error estimates for the cell-vertex finite volume method , 1994 .

[29]  Abdellatif Agouzal,et al.  A posteriori error estimator for finite volume methods , 2000, Appl. Math. Comput..

[30]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[31]  Jérôme Droniou,et al.  Error estimates for the convergence of a finite volume discretization of convection–diffusion equations , 2003, J. Num. Math..

[32]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[33]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[34]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[35]  Stanimire Tomov,et al.  Adaptive finite volume element method for convection-diffusion-reaction problems in 3-D , 2001 .

[36]  Gerd Kunert Robust a Posteriori Error Estimation for a Singularly Perturbed Reaction–Diffusion Equation on Anisotropic Tetrahedral Meshes , 2001, Adv. Comput. Math..

[37]  Xue-Cheng Tai,et al.  A robust nonconforming H2-element , 2001, Math. Comput..