On a variable smoothing procedure for Krylov subspace methods
暂无分享,去创建一个
[1] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[2] Y. Saad,et al. Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .
[3] Willi Schönauer,et al. Scientific computing on vector computers , 1987, Special topics in supercomputing.
[4] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[5] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[6] T. Greville,et al. Some Applications of the Pseudoinverse of a Matrix , 1960 .
[7] Homer F. Walker,et al. Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..
[8] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[9] Friedrich L. Bauer,et al. On certain methods for expanding the characteristic polynomial , 1959, Numerische Mathematik.
[10] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[11] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[12] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[13] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .