Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star

We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every $ 3.3610060^{\rm + 0.0000022 }_ $ days a mildly metal-poor solar-type star of magnitude V = 11.9. A combined analysis of the WASP photometry, high-precision followup transit photometry and radial velocities yield a planetary mass $M_{\rm p} = 0.503^_$ $M_{\rm J}$ and radius $R_{\rm p} = 1.224^_$ $R_{\rm J}$, resulting in a density $\rho_{\rm p} = 0.27 \pm 0.05$ $\rho_{\rm J}$. The mass and radius for the host star are $M_\ast = 0.88^_$ $M_\odot$ and $R_\ast = 0.870^_$ $R_\odot$. The non-zero orbital eccentricity $e = 0.054^{\rm +0.018}_$ that we measure suggests that the planet underwent a massive tidal heating ~1 Gyr ago that could have contributed to its inflated radius. High-precision radial velocities obtained during a transit allow us to measure a sky-projected angle between the stellar spin and orbital axis $\beta = 11^_$ deg. In addition to similar published measurements, this result favors a dominant migration mechanism based on tidal interactions with a protoplanetary disk.

[1]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[2]  S. Peale,et al.  The tides of Io , 1981 .

[3]  Tel Aviv,et al.  An intriguing correlation between the masses and periods of the transiting planets , 2004, astro-ph/0411701.

[4]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[5]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[6]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[7]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[8]  Adam Burrows,et al.  Theoretical Radii of Extrasolar Giant Planets: The Cases of TrES-4, XO-3b, and HAT-P-1b , 2008, 0805.1733.

[9]  A. Collier Cameron,et al.  A fast hybrid algorithm for exoplanetary transit searches , 2006, astro-ph/0609418.

[10]  Sara Seager,et al.  On the Period Distribution of Close-in Extrasolar Giant Planets , 2005 .

[11]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[12]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[13]  Joseph M. Hahn,et al.  Damping of Orbital Inclinations by Bending Waves , 1994 .

[14]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[15]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[16]  Joshua N. Winn,et al.  Measuring accurate transit parameters , 2008, Proceedings of the International Astronomical Union.

[17]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[18]  Barry Smalley Teff and log g Determinations , 2005 .

[19]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[20]  G. Gonzalez,et al.  Parent Stars of Extrasolar Planets. V. HD 75289 , 1999, astro-ph/9909453.

[21]  J. E. Stys,et al.  The XO Project: Searching for Transiting Extrasolar Planet Candidates , 2005, astro-ph/0505560.

[22]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[23]  R. G. West,et al.  WASP-4b: A 12th Magnitude Transiting Hot Jupiter in the Southern Hemisphere , 2008, 0801.1509.

[24]  Eric B. Ford,et al.  Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets , 2005, astro-ph/0512634.

[25]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[26]  Sofia Randich,et al.  Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .

[27]  M. J. Shallis,et al.  Stellar angular diameters from infrared photometry. Application to Arcturus and other stars; with effective temperatures. , 1977 .

[28]  Portugal,et al.  Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b , 2007, 0707.2261.

[29]  Steven Soter,et al.  Q in the solar system , 1966 .

[30]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[31]  David Charbonneau,et al.  TrES-2: The First Transiting Planet in the Kepler Field , 2006, astro-ph/0609335.

[32]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[33]  Peter R. McCullough,et al.  XO-3b: A Massive Planet in an Eccentric Orbit Transiting an F5 V Star , 2007, 0712.4283.

[34]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[35]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .

[36]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[37]  Michel Mayor,et al.  On the Track of Very Low-mass Planets with HARPS , 2005 .

[38]  D. Lin,et al.  Spin-Orbit Evolution of Short-Period Planets , 2004, astro-ph/0408191.

[39]  S. Baliunas,et al.  No Planet for Hd 166435 , 2022 .

[40]  D. N. C. Lin,et al.  Tidal Dissipation in Rotating Giant Planets , 2004 .

[41]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[42]  N. C. Santos,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003 .

[43]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[44]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[45]  C. J. Mottram,et al.  RISE: a fast-readout imager for exoplanet transit timing , 2008, Astronomical Telescopes + Instrumentation.

[46]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III , 2000 .

[47]  B. E. Reddy,et al.  Parent Stars of Extrasolar Planets. VI. Abundance Analyses of 20 New Systems , 2000, astro-ph/0010197.

[48]  Ludmila Carone,et al.  Tidal interactions of close-in extrasolar planets: The OGLE cases , 2004, astro-ph/0408328.

[49]  C. Moutou,et al.  High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method , 2006 .

[50]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[51]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[52]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[53]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[54]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[55]  Paul Barklem,et al.  A list of data for the broadening of metallic lines by neutral hydrogen collisions , 2000 .

[56]  Jason T. Wright,et al.  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.

[57]  C. Moutou,et al.  Misaligned spin-orbit in the XO-3 planetary system?† , 2008, Proceedings of the International Astronomical Union.

[58]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[59]  D. Queloz,et al.  Improved parameters for the transiting planet HD 17156b: a high-density giant planet with a very eccentric orbit , 2007, 0712.2073.

[60]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[61]  Debra A. Fischer,et al.  A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436 , 2004 .

[62]  Alvaro Gimenez,et al.  Equations for the Analysis of the Rossiter-MCLaughlin Effect in Extrasolar Planetary Transits , 2006 .