The asymptotically optimal meshsize function for bi-p degree interpolation over rectangular elements
暂无分享,去创建一个
[1] Jens Hugger. Recovery of the optimal mesh density function and near‐optimal meshes with rectangular elements in the mapped domain , 1995 .
[2] Ivo Babuška,et al. Basic principles of feedback and adaptive approaches in the finite element method , 1986 .
[3] J. Hugger,et al. Adaptive recovery of near optimal meshes in the finite element method for parameter dependent problems , 1992 .
[4] Graham F. Carey,et al. GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .
[5] J. Hugger,et al. Recovery and few parameter representation of the optimal mesh density function for near optimal finite element meshes , 1993 .
[6] Waldemar Rachowicz,et al. An anisotropic h-type mesh-refinement strategy , 1993 .
[7] J. Chandra,et al. Adaptive Computational Methods for Partial Differential Equations , 1984 .
[8] J. T. Oden,et al. Adaptive finite element methods for high‐speed compressible flows , 1987 .
[9] Ivo Babuška,et al. Adaptive Methods and Error Estimation for Elliptic Problems of Structural Mechanics. , 1983 .
[10] Local polynomial interpolation in a rectangle , 1994 .
[11] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[12] J. T. Oden,et al. Implementation of an adaptive refinement technique for the SUPG algorithm , 1987 .
[13] J. Hugger,et al. The theory of density representation of finite element meshes. Examples of density operators with quadrilateral elements in the mapped domain , 1993 .
[14] Ivo Babuška,et al. The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .