Crack initiation under thermal fatigue: An overview of CEA experience. Part I: Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue
暂无分享,去创建一个
Andrei Constantinescu | O. Ancelet | A. Fissolo | V. Maillot | Ludovic Vincent | S. Amiable | A. Fissolo | J. Stelmaszyk | A. Constantinescu | L. Vincent | C. Robertson | C. Robertson | O. Ancelet | S. Amiable | F. Mermaz | V. Maillot | F. Mermaz | Jean Marc Stelmaszyk | F. Bouchet | F. Bouchet
[1] Eric Charkaluk,et al. A computational approach to thermomechanical fatigue , 2004 .
[2] S. Suresh. Fatigue of materials , 1991 .
[3] M. Akamatsu,et al. Evaluation of the Risk of Damages in Mixing Zones: EDF R&D Programme , 2002 .
[4] Olivier Ancelet. Etude de l'amorçage et de la propagation des fissures sous chargement thermique cyclique 3D , 2005 .
[5] Stéphane Chapuliot,et al. A comparison of lifetime prediction methods for a thermal fatigue experiment , 2006 .
[6] M. Fivel,et al. Dislocation substructure in 316L stainless steel under thermal fatigue up to 650 K , 2001 .
[7] Pingsha Dong,et al. Current research on environmentally assisted cracking in light water reactor environments , 1999 .
[8] D. J. Marsh,et al. A THERMAL SHOCK FATIGUE STUDY OF TYPE 304 AND 316 STAINLESS STEELS , 1981 .
[9] Mauro Filippini,et al. A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .
[10] Eric Charkaluk,et al. Thermomechanical design in the automotive industry , 2004 .
[11] Jeffrey M. Keisler,et al. Statistical models for estimating fatigue strain-life behavior of pressure boundary materials in light water reactor environments , 1996 .
[12] M. Steen,et al. Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling , 1996 .
[13] S. Amiable. Prédiction de durée de vie de structures sous chargement de fatigue thermique , 2006 .
[14] R. Alain,et al. Low cycle fatigue behaviour in vacuum of a 316L-type austenitic stainless steel between 20 and 600°C—Part II: Dislocation structure evolution and correlation with cyclic behaviour , 1997 .
[15] D. Spera,et al. Thermal Fatigue of Materials and Components , 1976 .
[16] David L. McDowell,et al. Advances in Multiaxial Fatigue , 1993 .
[17] Valérie Maillot. Amorçage et propagation de réseaux de fissures de fatigue thermique dans un acier inoxydable austénitique de type X2 CrNi18-09 (AISI 304 L) , 2003 .
[18] D. Socie. Critical Plane Approaches for Multiaxial Fatigue Damage Assessment , 1993 .
[19] Nader Haddar,et al. Fatigue thermique d'un acier inoxydable austénitique 304L : simulation de l'amorçage et de la croissance des fissures courtes en fatigue isotherme et anisotherme , 2003 .
[20] A. Fissolo,et al. Thermal fatigue behaviour for a 316 L type steel , 1996 .
[21] J. A. Le Duff,et al. Thermal Fatigue Experience in French Piping: Influence of Surface Condition and Weld Local Geometry , 2002 .
[22] J. Lemaitre,et al. Mécanique des matériaux solides , 1996 .
[23] K. J. Miller,et al. Materials science perspective of metal fatigue resistance , 1993 .
[24] Stéphane Chapuliot,et al. Development of a test for the analysis of the harmfulness of a 3D thermal fatigue loading in tubes , 2007 .
[25] Jerzy Kaleta,et al. REPRESENTATION OF CYCLIC PROPERTIES OF AUSTENITIC STEELS WITH PLASTICITY‐INDUCED MARTENSITIC TRANSFORMATION , 1998 .
[26] Gérard Degallaix,et al. Thermal fatigue crack networks parameters and stability: an experimental study , 2005 .