Crack initiation under thermal fatigue: An overview of CEA experience. Part I: Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue

For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2D) loading condition is obtained in SPLASH and crack initiation is defined as the first 150-μm surface cracks, whereas a tri-dimensional (3D) loading condition is obtained in FAT3D and crack initiation refers to the first 2-mm surface crack. All the analysed tests clearly show that for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower in thermal fatigue than in uniaxial isothermal fatigue. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. In that frame, a Part II accompanying paper will be dedicated to investigate accurately on multiaxial effect, and to improve thus estimation of crack initiation under thermal fatigue.

[1]  Eric Charkaluk,et al.  A computational approach to thermomechanical fatigue , 2004 .

[2]  S. Suresh Fatigue of materials , 1991 .

[3]  M. Akamatsu,et al.  Evaluation of the Risk of Damages in Mixing Zones: EDF R&D Programme , 2002 .

[4]  Olivier Ancelet Etude de l'amorçage et de la propagation des fissures sous chargement thermique cyclique 3D , 2005 .

[5]  Stéphane Chapuliot,et al.  A comparison of lifetime prediction methods for a thermal fatigue experiment , 2006 .

[6]  M. Fivel,et al.  Dislocation substructure in 316L stainless steel under thermal fatigue up to 650 K , 2001 .

[7]  Pingsha Dong,et al.  Current research on environmentally assisted cracking in light water reactor environments , 1999 .

[8]  D. J. Marsh,et al.  A THERMAL SHOCK FATIGUE STUDY OF TYPE 304 AND 316 STAINLESS STEELS , 1981 .

[9]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[10]  Eric Charkaluk,et al.  Thermomechanical design in the automotive industry , 2004 .

[11]  Jeffrey M. Keisler,et al.  Statistical models for estimating fatigue strain-life behavior of pressure boundary materials in light water reactor environments , 1996 .

[12]  M. Steen,et al.  Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling , 1996 .

[13]  S. Amiable Prédiction de durée de vie de structures sous chargement de fatigue thermique , 2006 .

[14]  R. Alain,et al.  Low cycle fatigue behaviour in vacuum of a 316L-type austenitic stainless steel between 20 and 600°C—Part II: Dislocation structure evolution and correlation with cyclic behaviour , 1997 .

[15]  D. Spera,et al.  Thermal Fatigue of Materials and Components , 1976 .

[16]  David L. McDowell,et al.  Advances in Multiaxial Fatigue , 1993 .

[17]  Valérie Maillot Amorçage et propagation de réseaux de fissures de fatigue thermique dans un acier inoxydable austénitique de type X2 CrNi18-09 (AISI 304 L) , 2003 .

[18]  D. Socie Critical Plane Approaches for Multiaxial Fatigue Damage Assessment , 1993 .

[19]  Nader Haddar,et al.  Fatigue thermique d'un acier inoxydable austénitique 304L : simulation de l'amorçage et de la croissance des fissures courtes en fatigue isotherme et anisotherme , 2003 .

[20]  A. Fissolo,et al.  Thermal fatigue behaviour for a 316 L type steel , 1996 .

[21]  J. A. Le Duff,et al.  Thermal Fatigue Experience in French Piping: Influence of Surface Condition and Weld Local Geometry , 2002 .

[22]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[23]  K. J. Miller,et al.  Materials science perspective of metal fatigue resistance , 1993 .

[24]  Stéphane Chapuliot,et al.  Development of a test for the analysis of the harmfulness of a 3D thermal fatigue loading in tubes , 2007 .

[25]  Jerzy Kaleta,et al.  REPRESENTATION OF CYCLIC PROPERTIES OF AUSTENITIC STEELS WITH PLASTICITY‐INDUCED MARTENSITIC TRANSFORMATION , 1998 .

[26]  Gérard Degallaix,et al.  Thermal fatigue crack networks parameters and stability: an experimental study , 2005 .