Universal Computing in Reversible and Number-Conserving Two-Dimensional Cellular Spaces

A number-conserving reversible cellular automaton (NC-RCA) is a computing model that reflects both reversibility and mass or energy conservation law in physics. We show that, despite strict constraints of reversibility and number-conservation, there exist simple two-dimensional NC-RCAs that are capable of universal computation. These automata are classified into two types. Automaton of the first type implements a Fredkin gate in its space-time dynamic. That is a Fredkin gate, as a universal logical element, is embedded in its cellular space. Automaton of the second type, incorporate a novel logical element, called a “rotary element” in its lattice dynamic. NC-RCAs of the second type simulate any reversible two-counter machine in their space-time configuration. In both types of cellular automata the computation is realized via appropriate control of “moving particles” in the cellular space.

[1]  N. Margolus Physics-like models of computation☆ , 1984 .

[2]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[3]  Katsunobu Imai,et al.  Number-Conserving Reversible Cellular Automata and Their Computation-Universality , 2001, RAIRO Theor. Informatics Appl..

[4]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[5]  Kenichi Morita,et al.  Universality of a Reversible Two-Counter Machine , 1996, Theor. Comput. Sci..

[6]  Tommaso Toffoli,et al.  Computation and Construction Universality of Reversible Cellular Automata , 1977, J. Comput. Syst. Sci..

[7]  Maurice Margenstern,et al.  Universality of Reversible Hexagonal Cellular Automata , 1999, RAIRO Theor. Informatics Appl..

[8]  Katsunobu Imai,et al.  A computation-universal two-dimensional 8-state triangular reversible cellular automaton , 2000, Theor. Comput. Sci..

[9]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[10]  K. Morita,et al.  Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .

[11]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[12]  Kenichi Morita,et al.  A Simple Universal Logic Element and Cellular Automata for Reversible Computing , 2001, MCU.

[13]  Kenichi Morita A Simple Construction Method of a Reversible Finite Automaton out of Fredkin Gates, and Its Related Problem , 1990 .

[14]  Kenichi Morita,et al.  Computation-Universal Models of Two-Dimensional 16-State Reversible Cellular Automata , 1992 .

[15]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.