Universal Computing in Reversible and Number-Conserving Two-Dimensional Cellular Spaces
暂无分享,去创建一个
Katsunobu Imai | Kenichi Morita | Tsuyoshi Ogiro | Yasuyuki Tojima | K. Morita | Tsuyoshi Ogiro | Katsunobu Imai | Yasuyuki Tojima
[1] N. Margolus. Physics-like models of computation☆ , 1984 .
[2] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[3] Katsunobu Imai,et al. Number-Conserving Reversible Cellular Automata and Their Computation-Universality , 2001, RAIRO Theor. Informatics Appl..
[4] Anthony J. G. Hey,et al. Feynman Lectures on Computation , 1996 .
[5] Kenichi Morita,et al. Universality of a Reversible Two-Counter Machine , 1996, Theor. Comput. Sci..
[6] Tommaso Toffoli,et al. Computation and Construction Universality of Reversible Cellular Automata , 1977, J. Comput. Syst. Sci..
[7] Maurice Margenstern,et al. Universality of Reversible Hexagonal Cellular Automata , 1999, RAIRO Theor. Informatics Appl..
[8] Katsunobu Imai,et al. A computation-universal two-dimensional 8-state triangular reversible cellular automaton , 2000, Theor. Comput. Sci..
[9] Marvin Minsky,et al. Computation : finite and infinite machines , 2016 .
[10] K. Morita,et al. Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .
[11] N. Margolus,et al. Invertible cellular automata: a review , 1991 .
[12] Kenichi Morita,et al. A Simple Universal Logic Element and Cellular Automata for Reversible Computing , 2001, MCU.
[13] Kenichi Morita,et al. A Simple Construction Method of a Reversible Finite Automaton out of Fredkin Gates, and Its Related Problem , 1990 .
[14] Kenichi Morita,et al. Computation-Universal Models of Two-Dimensional 16-State Reversible Cellular Automata , 1992 .
[15] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.