Semi-discretization for Stochastic Scalar Conservation Laws with Multiple Rough Fluxes

We develop a semi-discretization approximation for scalar conservation laws with multiple rough time dependence in inhomogeneous fluxes. The method is based on Brenier's transport-collapse algorithm and uses characteristics defined in the setting of rough paths. We prove strong $L^1$-convergence for inhomogeneous fluxes and provide a rate of convergence for homogeneous one's. The approximation scheme as well as the proofs are based on the recently developed theory of pathwise entropy solutions and uses the kinetic formulation which allows to define globally the (rough) characteristics.

[1]  Long Chen FINITE VOLUME METHODS , 2011 .

[2]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[3]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[4]  Panagiotis E. Souganidis,et al.  Scalar conservation laws with rough (stochastic) fluxes , 2013, Stochastic Partial Differential Equations: Analysis and Computations.

[5]  Y. Giga,et al.  A kinetic construction of global solutions of first order quasilinear equations , 1983 .

[6]  Panagiotis E. Souganidis,et al.  Stochastic averaging lemmas for kinetic equations , 2012, 1204.0317.

[7]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[8]  W. Fleming,et al.  An integral formula for total gradient variation , 1960 .

[9]  Benoît Perthame,et al.  Kinetic formulation of conservation laws , 2002 .

[10]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths: Free nilpotent groups , 2010 .

[11]  Benoît Perthame,et al.  Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure , 1998 .

[12]  D. Crisan,et al.  Robust filtering: Correlated noise and multidimensional observation , 2012, 1201.1858.

[13]  Panagiotis E. Souganidis,et al.  Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case , 2014, Stochastic Partial Differential Equations: Analysis and Computations.

[14]  Panagiotis E. Souganidis,et al.  Scalar conservation laws with multiple rough fluxes , 2014, 1406.2978.

[15]  P. Lions,et al.  Mean field games , 2007 .

[16]  Yann Brenier,et al.  Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .

[17]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[18]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[19]  Terry Lyons,et al.  System Control and Rough Paths , 2003 .

[20]  Y. Brenier Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .

[21]  P. Souganidis,et al.  Long‐Time Behavior, Invariant Measures, and Regularizing Effects for Stochastic Scalar Conservation Laws , 2014, 1411.3939.

[22]  R. LeVeque Numerical methods for conservation laws , 1990 .

[23]  N SIAMJ. KINETIC SEMIDISCRETIZATION OF SCALAR CONSERVATION LAWS AND CONVERGENCE BY USING AVERAGING LEMMAS , 1999 .

[24]  Y. Brenier,et al.  A kinetic formulation for multi-branch entropy solutions of scalar conservation laws , 1998 .