A Critical Review of Li/Air Batteries

Lithium/air batteries, based on their high theoretical specific energy, are an extremely attractive technology for electrical energy storage that could make long-range electric vehicles widely affordable. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges. In nonaqueous Li/air cells, reversible chemistry with a high current efficiency over several cycles has not yet been established, and the deposition of an electrically resistive discharge product appears to limit the capacity. Aqueous cells require water-stable lithium-protection membranes that tend to be thick, heavy, and highly resistive. Both types of cell suffer from poor oxygen redox kinetics at the positive electrode and deleterious volume and morphology changes at the negative electrode. Closed Li/air systems that include oxygen storage are much larger and heavier than open systems, but so far oxygen- and OH − -selective membranes are not effective in preventing contamination of cells. In this review we discuss the most critical challenges to developing robust, high-energy Li/air batteries and suggest future research directions to understand and overcome these challenges. We predict that Li/air batteries will primarily remain a research topic for the next several years. However, if the fundamental challenges can be met, the Li/air battery has the potential to significantly surpass the energy storage capability of today’s Li-ion batteries.

[1]  G. Graff,et al.  Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte , 2011 .

[2]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[3]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[4]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[5]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[6]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[7]  J. F. Cooper,et al.  Mechanically rechargeable, metal--air batteries for automotive propulsion. [Al/air, 30-kW battery, 200 to 250 kg, 500 to 750 km range] , 1978 .

[8]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[9]  Jean-Marie Tarascon,et al.  Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution , 2001 .

[10]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[11]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[12]  Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory , 2001 .

[13]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[14]  B. S. Kwak,et al.  Thin-film rechargeable lithium batteries , 1994 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Wei Qu,et al.  A review on air cathodes for zinc–air fuel cells , 2010 .

[17]  Guoying Chen,et al.  Solid Solution Lithium Alloy Cermet Anodes , 2006 .

[18]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[19]  D. Aurbach The Role of Surface Films on Electrodes in Li-Ion Batteries , 2002 .

[20]  R. Thacker Some effects resulting from the use of a platinum catalyst in a zinc-oxygen cell☆ , 1969 .

[21]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[22]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[23]  Jagjit Nanda,et al.  Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes , 2011 .

[24]  P. He,et al.  The development of a new type of rechargeable batteries based on hybrid electrolytes. , 2010, ChemSusChem.

[25]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[26]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[27]  J. Bass,et al.  Communication: strong excitonic and vibronic effects determine the optical properties of Li2O2. , 2011, The Journal of chemical physics.

[28]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[29]  Phase diagram of the LISICON, solid electrolyte system, Li4GeO4Zn2GeO4 , 1980 .

[30]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[31]  T. Shiga,et al.  Solvent Screening of the Electrolyte for Nonaqueous Li-Air Batteries , 2010 .

[32]  Doron Aurbach,et al.  An analysis of rechargeable lithium-ion batteries after prolonged cycling , 2002 .

[33]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[34]  John B Goodenough,et al.  Aqueous cathode for next-generation alkali-ion batteries. , 2011, Journal of the American Chemical Society.

[35]  G. Farrington,et al.  Microelectrode studies of the Li/Li+ couple in low molecular weight liquid polyether electrolytes☆ , 1994 .

[36]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[37]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[38]  Kang Xu,et al.  Toward Reliable Values of Electrochemical Stability Limits for Electrolytes , 1999 .

[39]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[40]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[41]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[42]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[43]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[44]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[45]  Ludwig Jörissen,et al.  Bifunctional oxygen/air electrodes , 2006 .

[46]  D. Kirk,et al.  Properties of LiOH and LiNO3 aqueous solutions , 1990 .

[47]  P. Bruce,et al.  Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes , 1984 .

[48]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[49]  Y. Sadaoka,et al.  Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and In Systems. , 1992 .

[50]  Yongyao Xia,et al.  The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery , 2009 .

[51]  Xuejie Huang,et al.  A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries , 2009 .

[52]  J. Read Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery , 2006 .

[53]  B. Rohland,et al.  The compression of hydrogen in an electrochemical cell based on a PE fuel cell design , 2002 .

[54]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[55]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[56]  M. Williams,et al.  CRC Handbook of Chemistry and Physics, 76th edition , 1996 .

[57]  Klaus Brandt,et al.  Stability of Lithium Ion Spinel Cells. III. Improved Life of Charged Cells , 2000 .

[58]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[59]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[60]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[61]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[62]  H. Wang,et al.  Air cathodes for metal-air batteries and fuel cells , 2009, 2009 IEEE Electrical Power & Energy Conference (EPEC).

[63]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[64]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[65]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[66]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[67]  Deyang Qu,et al.  Investigation of the Gas-Diffusion-Electrode Used as Lithium/Air Cathode in Non-aqueous Electrolyte and the Importance of Carbon Material Porosity , 2010 .

[68]  John B. Kerr,et al.  The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .

[69]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[70]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[71]  B. Dunn,et al.  Li+ and divalent ion conductivity in beta and beta″ alumina , 1981 .

[72]  J. Newman,et al.  The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .

[73]  E. Takeuchi,et al.  Lithium electrodes with and without CO2 treatment: electrochemical behavior and effect on high rate lithium battery performance , 1996 .

[74]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[75]  K. Kanamura,et al.  Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes , 1995 .

[76]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[77]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[78]  A. Dey Lithium anode film and organic and inorganic electrolyte batteries , 1977 .

[79]  Jason Xu,et al.  High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions , 2010 .

[80]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[81]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[82]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[83]  James McBreen,et al.  New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries , 2008 .

[84]  Ji‐Guang Zhang,et al.  Hybrid Air-Electrode for Li/Air Batteries , 2010 .

[85]  P. Sabatier,et al.  Hydrogénations et déshydrogénations par catalyse , 1911 .

[86]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[87]  Vladimir Kolosnitsyn,et al.  Lithium-sulfur batteries: Problems and solutions , 2008 .

[88]  K. C. Tsai,et al.  Anodic Behavior of Lithium in Aqueous Electrolytes II . Mechanical Passivation , 1976 .

[89]  Peter Hall,et al.  Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy , 2010 .

[90]  Odile Fichet,et al.  Development of a Lithium Air Rechargeable Battery , 2010, ECS Transactions.

[91]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[92]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[93]  Y. Sadaoka,et al.  The Electrical Properties of Ceramic Electrolytes for LiM x Ti2 − x ( PO 4 ) 3 + yLi2 O , M = Ge , Sn , Hf , and Zr Systems , 1993 .

[94]  O. Bohnké,et al.  Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate , 1996 .

[95]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[96]  Nicola Marzari,et al.  Ab Initio Electrochemical Properties of Electrode Surfaces , 2010 .

[97]  Guoying Chen,et al.  Short communication Solid solution lithium alloy cermet anodes , 2007 .

[98]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[99]  M. Salomon,et al.  Primary Li-air cell development , 2011 .

[100]  Wei Liu,et al.  Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air , 2010 .

[101]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[102]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[103]  Venkataraman Thangadurai,et al.  Lithium ion conductivity of Li5+xBaxLa3−xTa2O12 (x = 0–2) with garnet-related structure in dependence of the barium content , 2007 .

[104]  R. Moshtev On the electrochemistry of the nonaqueous lithium cell , 1984 .

[105]  Jie Fu Superionic conductivity of glass-ceramics in the system Li 2O- Al 2O 3-TiO 2-P 2O 5 , 1997 .

[106]  S. G. Stewart Determination of transport properties and optimization of lithium-ion batteries , 2007 .

[107]  M. Neurock,et al.  Modeling Electrocatalytic Reaction Systems from First Principles , 2009 .

[108]  Kang Xu,et al.  A non-aqueous electrolyte for the operation of Li/air battery in ambient environment , 2011 .

[109]  E. Littauer,et al.  Corrosion of Lithium in Alkaline Solution , 1977 .

[110]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[111]  P. Ugo,et al.  Oxidation potentials of electrolyte solutions for lithium cells , 1988 .

[112]  M. Tabuchi,et al.  Ionic conductivity enhancement in LiGe2(PO4)3 solid electrolyte , 1997 .

[113]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[114]  J. Newman,et al.  Modeling Two-Phase Behavior in PEFCs , 2004 .

[115]  L. C. De Jonghe,et al.  SECONDARY BATTERIES – METAL-AIR SYSTEMS | Lithium–Air , 2009 .

[116]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[117]  K. C. Tsai,et al.  Anodic Behavior of Lithium in Aqueous Electrolytes I . Transient Passivation , 1976 .

[118]  T. Ishihara,et al.  Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery , 2011 .

[119]  Roger D. Pollard,et al.  Mathematical modeling of the lithium-aluminum, iron sulfide battery. I - Galvanostatic discharge behavior. II - The influence of relaxation time on the charging characteristics , 1981 .

[120]  Bruno Scrosati,et al.  Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. , 2011, Angewandte Chemie.

[121]  D. T. Sawyer,et al.  How super is superoxide , 1981 .

[122]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[123]  M. Mastragostino,et al.  Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes , 2011 .

[124]  Steven J. Visco,et al.  The Development of High Energy Density Lithium/Air and Lithium/Water Batteries with No Self-Discharge , 2006 .

[125]  T. Ishihara,et al.  Pd / MnO2 Air Electrode Catalyst for Rechargeable Lithium/Air Battery , 2010 .

[126]  E. Littauer,et al.  Mathematical Model of a Lithium‐Water Electrochemical Power Cell , 1976 .

[127]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[128]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[129]  Digby D. Macdonald,et al.  The electrochemical behavior of lithium in alkaline aqueous electrolytes , 2001 .

[130]  K. Blurton,et al.  Metal/air batteries: Their status and potential — a review , 1979 .

[131]  R. Spotnitz Simulation of capacity fade in lithium-ion batteries , 2003 .

[132]  A. Clearfield,et al.  Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf) , 1986 .

[133]  Wu Xu,et al.  High Capacity Pouch-Type Li–Air Batteries , 2010 .

[134]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[135]  Ye Xu,et al.  O2 reduction by lithium on Au(111) and Pt(111). , 2010, The Journal of chemical physics.

[136]  Mario Blanco,et al.  Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes , 2011 .

[137]  A. West,et al.  Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5 – 3xRE0.5 +xTiO3 : ReLa, Nd , 1995 .

[138]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[139]  Yasushi Inda,et al.  Lithium Ion Conductive Glass Ceramics: Properties and Application in Lithium Metal Batteries , 2010 .

[140]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[141]  Guoying Chen,et al.  DEVELOPMENT OF SUPPORTED BIFUNCTIONAL ELECTROCATALYSTS FOR UNITIZED REGENERATIVE FUEL CELLS , 2002 .

[142]  Tejs Vegge,et al.  The role of transition metal interfaces on the electronic transport in lithium–air batteries , 2011 .

[143]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[144]  Paul C. Johnson,et al.  A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions , 2010 .

[145]  G. Nazri Preparation, structure and ionic conductivity of lithium phosphide , 1989 .

[146]  Xiao‐Qing Yang,et al.  Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation , 2011 .