A reversible infinite HMM using normalised random measures
暂无分享,去创建一个
[1] Yee Whye Teh,et al. Beam sampling for the infinite hidden Markov model , 2008, ICML '08.
[2] Silke W. W. Rolles,et al. Bayesian analysis for reversible Markov chains , 2006, math/0605582.
[3] U. Fröbe,et al. Analysing ion channels with hidden Markov models , 2004, Pflügers Archiv.
[4] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[5] Jared Roseman,et al. Single ion channel recordings with CMOS-anchored lipid membranes. , 2013, Nano letters.
[6] Y. Teh,et al. MCMC for Normalized Random Measure Mixture Models , 2013, 1310.0595.
[7] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[8] S. L. Scott. Bayesian Methods for Hidden Markov Models , 2002 .
[9] Carl E. Rasmussen,et al. Factorial Hidden Markov Models , 1997 .
[10] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[11] V. Climenhaga. Markov chains and mixing times , 2013 .
[12] J. Kingman,et al. Completely random measures. , 1967 .
[13] Ryan A. Flynn,et al. A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.
[14] Lorenzo Trippa,et al. Bayesian nonparametric analysis of reversible Markov chains , 2013, 1306.1318.
[15] P. Park. ChIP–seq: advantages and challenges of a maturing technology , 2009, Nature Reviews Genetics.
[16] D. Freedman,et al. De Finetti's Theorem for Markov Chains , 1980 .
[17] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .