Reversals and Transpositions Over Finite Alphabets

Extending results of Christie and Irving, we examine the action of reversals and transpositions on finite strings over an alphabet of size k. We show that determining reversal, transposition, or signed reversal distance between two strings over a finite alphabet is NP-hard, while for "dense" instances we give a polynomial-time approximation scheme. We also give a number of extremal results, as well as investigating the distance between random strings and the problem of sorting a string over a finite alphabet.

[1]  Henrik Eriksson,et al.  Sorting a bridge hand , 2001, Discret. Math..

[2]  Marek Karpinski,et al.  Polynomial Time Approximation Schemes for Some Dense Instances of NP-Hard Optimization Problems , 1997, Algorithmica.

[3]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[4]  Marek Karpinski,et al.  Polynomial time approximation of dense weighted instances of MAX-CUT , 2000, Random Struct. Algorithms.

[5]  Vineet Bafna,et al.  Genome rearrangements and sorting by reversals , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[6]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[7]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[8]  J. M. Hammersley,et al.  Generalization of the Fundamental Theorem on Subadditive Functions , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Maria Emilia M. T. Walter,et al.  Reversal Distance of Signed Circular Chromosomes , 2000 .

[10]  Alberto Caprara,et al.  Sorting by reversals is difficult , 1997, RECOMB '97.

[11]  Piotr Berman,et al.  Fast Sorting by Reversal , 1996, CPM.

[12]  Ivan Hal Sudborough,et al.  On the Diameter of the Pancake Network , 1997, J. Algorithms.

[13]  Vineet Bafna,et al.  Sorting by Transpositions , 1998, SIAM J. Discret. Math..

[14]  W. Vega,et al.  MAX-CUT has a randomized approximation scheme in dense graphs , 1996, Random Struct. Algorithms.

[15]  Christos H. Papadimitriou,et al.  Bounds for sorting by prefix reversal , 1979, Discret. Math..

[16]  Marek Karpinski,et al.  On Some Tighter Inapproximability Results (Extended Abstract) , 1999, ICALP.

[17]  T. Graves,et al.  The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes , 2003, Nature.

[18]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[19]  Marek Karpinski,et al.  Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems , 1999, J. Comput. Syst. Sci..

[20]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[21]  P.A. Pevzner,et al.  Open combinatorial problems in computational molecular biology , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[22]  Robert W. Irving,et al.  Sorting Strings by Reversals and by Transpositions , 2001, SIAM J. Discret. Math..

[23]  Haim Kaplan,et al.  A Faster and Simpler Algorithm for Sorting Signed Permutations by Reversals , 1999, SIAM J. Comput..

[24]  David Sankoff,et al.  Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement , 1995, Algorithmica.

[25]  Marek Karpinski,et al.  1.375-Approximation Algorithm for Sorting by Reversals , 2002, ESA.

[26]  João Meidanis,et al.  A Lower Bound on the Reversal and Transposition Diameter , 2002, J. Comput. Biol..

[27]  David A. Christie,et al.  A 3/2-approximation algorithm for sorting by reversals , 1998, SODA '98.