Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

[1]  F. Kapteijn,et al.  Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts , 2016 .

[2]  Jia Yang,et al.  Size and Promoter Effects in Supported Iron Fischer–Tropsch Catalysts: Insights from Experiment and Theory , 2016 .

[3]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[4]  V. T. Surikov,et al.  Carbonization of α-Fe upon mechanical alloying , 2014, The Physics of Metals and Metallography.

[5]  F. Kapteijn,et al.  Six-flow operations for catalyst development in Fischer-Tropsch synthesis: bridging the gap between high-throughput experimentation and extensive product evaluation. , 2013, The Review of scientific instruments.

[6]  Sivakumar R. Challa,et al.  Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? , 2013, Accounts of chemical research.

[7]  F. Tuna,et al.  Magnetic cryocooling with Gd3+ centers in a light and compact framework , 2012, 1212.2877.

[8]  K. D. de Jong,et al.  Iron particle size effects for direct production of lower olefins from synthesis gas. , 2012, Journal of the American Chemical Society.

[9]  O. Roubeau,et al.  Increasing the dimensionality of cryogenic molecular coolers: Gd-based polymers and metal-organic frameworks. , 2012, Chemical communications.

[10]  S. V. Sciver Low-Temperature Materials Properties , 2012 .

[11]  A. Beale,et al.  Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C). , 2010, Journal of the American Chemical Society.

[12]  J. Berg,et al.  Role of Step Sites and Surface Vacancies in the Adsorption and Activation of CO on χ-Fe5C2 Surfaces , 2010 .

[13]  H. Xiang,et al.  Activation pressure studies with an iron-based catalyst for slurry Fischer-Tropsch synthesis , 2009 .

[14]  D. Sorescu Plane-Wave Density Functional Theory Investigations of the Adsorption and Activation of CO on Fe5C2 Surfaces , 2009 .

[15]  P J Steynberg,et al.  Bulk and surface analysis of Hägg Fe carbide (Fe5C2): a density functional theory study , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  A. McGaughey,et al.  Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations , 2007 .

[17]  Enrique Iglesia,et al.  Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties , 2002 .

[18]  E. Steen,et al.  Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts , 2002 .

[19]  Weiping Ding,et al.  Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischer-Tropsch Synthesis , 2002 .

[20]  R. O'brien,et al.  Structural analysis of unpromoted Fe-based Fischer-Tropsch catalysts using X-ray absorption spectroscopy , 2001 .

[21]  D. Bukur,et al.  Pretreatment effect studies with a precipitated iron Fischer–Tropsch catalyst in a slurry reactor , 1999 .

[22]  J. J. Retief Powder diffraction data and Rietveld refinement of Hägg-carbide, χ-Fe5C2 , 1999, Powder Diffraction.

[23]  S. Herreyre,et al.  Study by mössbauer spectroscopy and magnetization measurement of the evolution of iron catalysts used in the disproportionation of CO , 1997 .

[24]  R. O'brien,et al.  Activation Study of Precipitated Iron Fischer−Tropsch Catalysts† , 1996 .

[25]  Abhaya K. Datye,et al.  Activation of Precipitated Iron Fischer-Tropsch Synthesis Catalysts , 1995 .

[26]  Gerald P. Huffman,et al.  Pretreatment effect studies with a precipitated iron Fischer-Tropsch catalyst , 1995 .

[27]  Armando Fernández Guillermet,et al.  Cohesive properties and vibrational entropy of 3d-transition metal carbides , 1992 .

[28]  J. W. Mitchell,et al.  Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts , 1990 .

[29]  P. Stair,et al.  Compositional aspects of iron Fischer-Tropsch catalysts: An XPS/reaction study , 1989 .

[30]  Alexis T. Bell,et al.  Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts , 1986 .

[31]  E. Grave,et al.  Influence of small aluminum substitutions on the hematite lattice , 1985 .

[32]  Raymond Jeanloz,et al.  Wüstite (Fe1‐x O): A review of its defect structure and physical properties , 1984 .

[33]  B. Pommier,et al.  On the mechanism of the Fischer-Tropsch synthesis involving unreduced iron catalyst , 1982 .

[34]  W. Delgass,et al.  The characterization of carbon-supported iron catalysts: Chemisorption, magnetization, and Mössbauer spectroscopy , 1982 .

[35]  P. Walker,et al.  CO hydrogenation over well-dispersed carbon-supported iron catalysts , 1982 .

[36]  P. Mériaudeau,et al.  Changes in the surface structure and composition of an iron catalyst of reduced or unreduced Fe2O3 during the reaction of carbon monoxide and hydrogen , 1982 .

[37]  J. Niemantsverdriet,et al.  On the time-dependent behavior of iron catalysts in Fischer-Tropsch synthesis , 1981 .

[38]  J. Butt,et al.  Iron alloy Fischer-Tropsch catalysts: III. Conversion dependence of selectivity and water-gas shift , 1981 .

[39]  J. Niemantsverdriet,et al.  Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements , 1980 .

[40]  H. Schäfer‐Stahl Characterization by Mössbauer Spectroscopy of Iron Carbide Phases in a Highly Active Carbon Matrix Catalyst for Medium Pressure Fischer‐Tropsch Synthesis , 1980 .

[41]  E. Bauer,et al.  I - mise au point sur la structure lacunaire de la wustite et necessite de nouvelles recherches experimentales , 1980 .

[42]  G. Raupp,et al.  Mössbauer investigation of supported Fe and FeNi catalysts: II. Carbides formed Fischer-Tropsch synthesis , 1979 .

[43]  G. Raupp,et al.  Mössbauer investigation of supported Fe catalysts: III. In situ kinetics and spectroscopy during Fischer-Tropsch synthesis , 1979 .

[44]  G. Raupp,et al.  Mössbauer investigation of supported Fe and FeNi catalysts: I. Effect of pretreatment on particle size , 1979 .

[45]  J. Butt,et al.  Carburization of supported iron synthesis catalysts , 1978 .

[46]  J. Dubois,et al.  Etude par spectrométrie Mössbauer des carbures de Fer Fe3C et Fe5C2 , 1976 .

[47]  T. Reed,et al.  Free Energy of Formation of Binary Compounds: An Atlas of Charts for High-Temperature Chemical Calculations , 1971 .

[48]  H. Bernas,et al.  Electronic exchange and the Mössbauer effect in iron-based interstitial compounds , 1967 .

[49]  G. A. Jeffrey,et al.  On the cementite structure , 1965 .

[50]  G. Barton,et al.  The structure of a pseudo‐hexagonal iron carbide , 1964 .

[51]  J. Snyman,et al.  Identification of Eckstrom-Adcock Iron Carbide as Fe7C3 , 1964 .

[52]  S. Nagakura Study of Metallic Carbides by Electron Diffraction Part III. Iron Carbides , 1959 .

[53]  R. Anderson,et al.  Studies of the Fischer-Tropsch Synthesis. XIV. Hägg Iron Carbide as Catalysts1 , 1955 .

[54]  J. J. Mitchell A Study of the Formation of Iron Percarbide , 1953 .

[55]  H. Storch The Fischer-Tropsch and related syntheses , 1951 .

[56]  H. Eckstrom,et al.  A NEW IRON CARBIDE IN HYDROCARBON SYNTHESIS CATALYSTS , 1950 .

[57]  L. Hofer,et al.  The Modifications of the Carbide, Fe2C; Their Properties and Identification , 1949 .

[58]  U. Hofmann,et al.  Die Kohlenstoffabscheidung aus Kohlenoxyd an Eisen III. Die Bildung von Eisenoxyden und Eisenkarbiden im Bodenkörper , 1930 .