Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium

The dependence of the strength of the electron-phonon coupling and the electron heat capacity on the electron temperature is investigated for eight representative metals, Al, Cu, Ag, Au, Ni, Pt, W, and Ti, for the conditions of strong electron-phonon nonequilibrium. These conditions are characteristic of metal targets subjected to energetic ion bombardment or short-pulse laser irradiation. Computational analysis based on first-principles electronic structure calculations of the electron density of states predicts large deviations (up to an order of magnitude) from the commonly used approximations of linear temperature dependence of the electron heat capacity and a constant electron-phonon coupling. These thermophysical properties are found to be very sensitive to details of the electronic structure of the material. The strength of the electron-phonon coupling can either increase (Al, Au, Ag, Cu, and W), decrease (Ni and Pt), or exhibit nonmonotonic changes (Ti) with increasing electron temperature. The electron heat capacity can exhibit either positive (Au, Ag, Cu, and W) or negative (Ni and Pt) deviations from the linear temperature dependence. The large variations of the thermophysical properties, revealed in this work for the range of electron temperatures typically realized in femtosecond laser material processing applications, have important implications for quantitative computational analysismore » of ultrafast processes associated with laser interaction with metals.« less

[1]  B. Luther-Davies,et al.  Gallium Transformation under femtosecond laser excitation: Phase coexistence and incomplete melting , 2003, physics/0311010.

[2]  A. N. Smith,et al.  Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al. , 1999, Applied optics.

[3]  Xianfan Xu,et al.  Mechanisms of decomposition of metal during femtosecond laser ablation , 2005 .

[4]  J. Dwyer,et al.  Femtosecond electron diffraction: ‘making the molecular movie’ , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[6]  A. Lagendijk,et al.  Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film. , 1990, Physical review letters.

[7]  P. Hopkins,et al.  Substrate influence in electron–phonon coupling measurements in thin Au films , 2007 .

[8]  Zhibin Lin,et al.  Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study , 2006 .

[9]  D. M. Duffy,et al.  Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations , 2007 .

[10]  J. K. Chen,et al.  Modelling of ultrashort laser ablation of gold films in vacuum , 2003 .

[11]  A. Lagendijk,et al.  Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. , 1995, Physical review. B, Condensed matter.

[12]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[13]  P. Balling,et al.  Short-pulse ablation rates and the two-temperature model , 2007 .

[14]  J. K. Chen,et al.  Modeling of femtosecond laser-induced non-equilibrium deformation in metal films , 2002 .

[15]  Cheng,et al.  Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors. , 1990, Physical review letters.

[16]  G Zérah,et al.  Effect of intense laser irradiation on the lattice stability of semiconductors and metals. , 2006, Physical review letters.

[17]  Girardeau-Montaut Theory of ultrashort nonlinear multiphoton photoelectric emission from metals. , 1995, Physical review. B, Condensed matter.

[18]  A. Borisov,et al.  Electronic excitations in metals and at metal surfaces. , 2006, Chemical reviews.

[19]  V. Carey,et al.  Proceedings of the eighth international heat transfer conference , 1986 .

[20]  Zhibin Lin,et al.  Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations , 2006, SPIE High-Power Laser Ablation.

[21]  E. Carpene Ultrafast laser irradiation of metals: Beyond the two-temperature model , 2006 .

[22]  Landman,et al.  Superheating, melting, and annealing of copper surfaces. , 1993, Physical review letters.

[23]  D. Strauch,et al.  Electron-phonon coupling in the metallic elements Al, Au, Na, and Nb: A first-principles study , 1998 .

[24]  Norris,et al.  Time-resolved observation of electron-phonon relaxation in copper. , 1987, Physical Review Letters.

[25]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[26]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[27]  Zhibin Lin,et al.  Temperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation , 2007 .

[28]  N. E. Phillips,et al.  HEAT CAPACITY OF ALUMINUM BETWEEN 0.1 K AND 4.0 K , 1959 .

[29]  C. Trautmann,et al.  Electronic sputtering of metals and insulators by swift heavy ions , 2003 .

[30]  P. Echenique,et al.  Electron–phonon contribution to the phonon and excited electron (hole) linewidths in bulk Pd , 2006 .

[31]  W. P. Latham,et al.  The role of electron–phonon coupling in ultrafast laser heating , 2005 .

[32]  Yu. V. Petrov,et al.  Energy exchange between the lattice and electrons in a metal under femtosecond laser irradiation , 2005 .

[33]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[34]  Eckart Matthias,et al.  Role of electron-phonon coupling in femtosecond laser damage of metals , 1998, Other Conferences.

[35]  Kevin Leung,et al.  Designing meaningful density functional theory calculations in materials science—a primer , 2004 .

[36]  C. L. Tien,et al.  Size Effects on Nonequilibrium Laser Heating of Metal Films , 1993 .

[37]  K. Kawamura,et al.  First-principles electronic thermal pressure of metal Au and Pt , 2002 .

[38]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[39]  Allen,et al.  Theory of thermal relaxation of electrons in metals. , 1987, Physical review letters.

[40]  M. Vičánek,et al.  Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation , 2002 .

[41]  The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process , 1994 .

[42]  Smith,et al.  Femtosecond thermoreflectivity and thermotransmissivity of polycrystalline and single-crystalline gold films. , 1991, Physical review. B, Condensed matter.

[43]  T. A. Lewis,et al.  The effects of electron-phonon coupling on defect production by displacement cascades in -iron , 1998 .

[44]  J. Janak,et al.  Calculations of the superconducting properties of 32 metals with Z ≤ 49 , 1977 .

[45]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[46]  J. K. Chen,et al.  NUMERICAL STUDY OF ULTRASHORT LASER PULSE INTERACTIONS WITH METAL FILMS , 2001 .

[47]  J. Dwyer,et al.  Femtosecond electron diffraction: an atomic perspective of condensed phase dynamics , 2007 .

[48]  Allen Empirical electron-phonon lambda values from resistivity of cubic metallic elements. , 1987, Physical review. B, Condensed matter.

[49]  E. Leveugle,et al.  Photomechanical spallation of molecular and metal targets: molecular dynamics study , 2004 .

[50]  Leonid V. Zhigilei,et al.  Metal ablation by picosecond laser pulses: A hybrid simulation , 2002 .

[51]  C. Dufour,et al.  Electron-phonon coupling and the sensitivity of metals to irradiation with swift heavy ions , 1997 .

[52]  Leonid V. Zhigilei,et al.  Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films , 2003 .

[53]  Moshe Kaveh,et al.  Electron-electron scattering in conducting materials , 1984 .

[54]  Jeffrey Bokor,et al.  Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films , 1992 .

[55]  P. Hopkins,et al.  Thin Film Non-Noble Transition Metal Thermophysical Properties , 2005 .

[56]  Downer,et al.  Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. , 1994, Physical review. B, Condensed matter.

[57]  James G. Fujimoto,et al.  Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures , 1984, Topical Meeting on Ultrafast Phenomena.

[58]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[59]  Savrasov,et al.  Electron-phonon interactions and related physical properties of metals from linear-response theory. , 1996, Physical review. B, Condensed matter.