Photo-thermoelectric energy converter with black-Si absorber

Thermal to electrical energy conversation was increased by ~ 50% by dispersing 50-nm-diameter Au nanoparticles over the black-Si light harvesting surface at an optimized concentration of the Au-colloidal solution. The size of Au nanoparticles corresponds to the extinction maximum at the spectral location of the reflection dip of black-Si substrate. Black-Si with reflectivity of 1-2% over the entire visible spectrum is a promising material for extending the operational range of solar and thermal energy converters into longer wavelength regions. Numerical simulations reveal efficient localization of light energy absorption inside black-Si.

[1]  Sergey Eyderman,et al.  Solar light trapping in slanted conical-pore photonic crystals , 2013, Optics & Photonics - Solar Energy + Applications.

[2]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[3]  E. Yablonovitch Statistical ray optics , 1982 .

[4]  B. Potapkin,et al.  Minimizing light reflection from dielectric textured surfaces. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[6]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[7]  Shanhui Fan,et al.  Thermal rectification through vacuum. , 2010, Physical review letters.

[8]  Jian Lu,et al.  Toward the World Smallest Wireless Sensor Nodes With Ultralow Power Consumption , 2014, IEEE Sensors Journal.

[9]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[10]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[11]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[12]  George Barbastathis,et al.  Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity. , 2012, ACS nano.

[13]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[14]  Saulius Juodkazis,et al.  Ion-beam and plasma etching of a conical-pores photonic crystal for thin-film solar cell , 2013, Smart Materials, Nano-, and Micro- Smart Systems.

[15]  Sergey Eyderman,et al.  Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals , 2013 .

[16]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[17]  P. Würfel,et al.  Theoretical limits of thermophotovoltaic solar energy conversion , 2003 .

[18]  Saulius Juodkazis,et al.  Black silicon: substrate for laser 3D micro/nano-polymerization. , 2013, Optics express.

[19]  Saulius Juodkazis,et al.  Bactericidal activity of black silicon , 2013, Nature Communications.

[20]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[21]  Saulius Juodkazis,et al.  Surface‐enhanced Raman scattering sensing on black silicon , 2013 .

[22]  Saulius Juodkazis,et al.  Versatile SERS sensing based on black silicon. , 2015, Optics express.

[23]  S. Purcell,et al.  Ultra low power consumption for self-oscillating nanoelectromechanical systems constructed by contacting two nanowires. , 2013, Nano letters.

[24]  T. Torfs,et al.  Low Power Wireless Sensor Network for Building Monitoring , 2013, IEEE Sensors Journal.

[25]  Sergey Eyderman,et al.  Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping , 2013 .

[26]  J. Lu,et al.  Towards the world smallest wireless sensor nodes with low power consumption for ‘Green’ sensor networks , 2013, 2013 IEEE SENSORS.