An Introduction to the Nonperturbative Renormalization Group

We give in these notes a short presentation of both the main ideas underlying Wilson’s renormalization group (RG) and their concrete implementation under the form of what is now called the non-perturbative renormalization group (NPRG) or sometimes the functional renormalization group (which can be perturbative). Prior knowledge of perturbative field theory is not required for the understanding of the heart of the article.

[1]  Pierre Le Doussal,et al.  Functional renormalization group at large N for disordered systems. , 2001, Physical review letters.

[2]  C. Wetterich,et al.  Average action for the N-component ϕ4 theory , 1990 .

[3]  J. F. Nicoll,et al.  An exact one-particle-irreducible renormalization-group generator for critical phenomena , 1977 .

[4]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[5]  Peter Hasenfratz,et al.  Renormalization group study of scalar field theories , 1986 .

[6]  Tim R. Morris Derivative expansion of the exact renormalization group , 1994 .

[7]  D E Feldman Critical exponents of the random-field O(N) model. , 2002, Physical review letters.

[8]  Nicolas Wschebor,et al.  A new method to solve the non-perturbative renormalization group equations , 2006 .

[9]  C. Wetterich,et al.  Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition , 2001 .

[10]  Gilles Tarjus,et al.  Nonperturbative functional renormalization group for random-field models: the way out of dimensional reduction. , 2004, Physical review letters.

[11]  Ulrich Ellwanger Flow equations forN point functions and bound states , 1994 .

[12]  Steven Weinberg,et al.  Critical Phenomena for Field Theorists , 1978 .

[13]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[14]  Vladimir F. Kovalev,et al.  The Bogoliubov renormalization group and solution symmetry in mathematical physics , 2000 .

[15]  Bertrand Delamotte,et al.  A Hint of renormalization , 2002, hep-th/0212049.

[16]  Pierre Le Doussal,et al.  Functional renormalization group and the field theory of disordered elastic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Michel Le Bellac,et al.  Quantum and statistical field theory , 1991 .

[18]  J. Vidal,et al.  Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003 .

[19]  Luciano Reatto,et al.  Liquid state theories and critical phenomena , 1995 .

[20]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[21]  Shunichi Muto,et al.  Q -state Potts model by Wilson's exact renormalization-group equation , 1984 .

[22]  A. Strumia,et al.  A Consistent calculation of bubble nucleation rates , 1998, hep-ph/9806453.

[23]  C. Wetterich,et al.  Critical phenomena in continuous dimension , 2004 .

[24]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[25]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[26]  F. Wilczek Quantum Field Theory , 1998, hep-th/9803075.

[27]  Daniel F. Litim Mind The Gap , 2001 .

[28]  G. Zumbach,et al.  The renormalization group in the local potential approximation and its applications to the O ( n) model , 1994 .

[29]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[30]  Jean-Paul Blaizot,et al.  Nonperturbative renormalization group and momentum dependence of n-point functions. II. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Andrea Pelissetto,et al.  Critical phenomena and renormalization-group theory , 2002 .

[32]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[33]  Gilles Tarjus,et al.  Unified picture of ferromagnetism, quasi-long-range order, and criticality in random-field models. , 2006, Physical review letters.

[34]  Hagen Kleinert,et al.  Critical properties of φ4-theories , 2001 .

[35]  J. Vidal,et al.  Randomly dilute Ising model: A nonperturbative approach , 2001, cond-mat/0109176.

[36]  Bagnuls,et al.  Field-theoretical approach to critical phenomena. , 1990, Physical review. B, Condensed matter.

[37]  Daniel F. Litim Critical exponents from optimised renormalisation group flows , 2002 .

[38]  Delamotte,et al.  Frustrated heisenberg magnets: A nonperturbative approach , 2000, Physical review letters.

[39]  Zumbach Almost second order phase transitions. , 1993, Physical review letters.

[40]  Geoffrey R. Golner,et al.  Renormalization-Group Calculation of Critical Exponents in Three Dimensions , 1975 .

[41]  Hagen Kleinert,et al.  Critical properties of phi**4-theories , 2001 .

[42]  Ulrich Ellwanger Flow equations and BRS invariance for Yang-Mills theories , 1994 .

[43]  B. Delamotte,et al.  What can be learnt from the nonperturbative renormalization group , 2004 .

[44]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[45]  K. E. Newman,et al.  Critical exponents by the scaling-field method: The isotropic N-vector model in three dimensions , 1984 .

[46]  C. Bervillier Exact renormalization group equation for the Lifshitz critical point , 2004 .

[47]  G. Zumbach,et al.  The local potential approximation of the renormalization group and its applications , 1994 .

[48]  Yurij Holovatch,et al.  Book Review: Critical Properties of φ4-Theories. Hagen Kleinert, Verena Schulte-Frohlinde, World Scientific, Singapore, 2001 , 2002 .

[49]  C. Wetterich,et al.  Equation of state near the endpoint of the critical line , 1999 .

[50]  Tim R. Morris The renormalization group and two dimensional multicritical effective scalar field theory , 1995 .

[51]  C. Bervillier,et al.  Exact renormalization group equations. An Introductory review , 2000 .

[52]  Bertrand Delamotte,et al.  Nonperturbative renormalization-group study of reaction-diffusion processes. , 2004, Physical review letters.

[53]  C. Bervillier,et al.  EXACT RENORMALIZATION GROUP EQUATIONS AND THE FIELD THEORETICAL APPROACH TO CRITICAL PHENOMENA , 2001 .

[54]  H. Kunz,et al.  Stiefel models of frustrated antiferromagnets , 1993 .

[55]  C. Bervillier Wilson–Polchinski exact renormalization group equation for O (N) systems: leading and next-to-leading orders in the derivative expansion , 2005, hep-th/0501087.

[56]  H. E. Stanley,et al.  A differential generator for the free energy and the magnetization equation of state , 1976 .

[57]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[58]  J. M. Pawlowski,et al.  Flow equations for the BCS-BEC crossover , 2007, cond-mat/0701198.

[59]  Hugues Chaté,et al.  Quantitative phase diagrams of branching and annihilating random walks. , 2004, Physical review letters.

[60]  C. Wetterich,et al.  Critical Exponents from the Effective Average Action , 1994 .

[61]  Jean-Paul Blaizot,et al.  Nonperturbative renormalization group and momentum dependence of n-point functions. I. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  J. Vidal,et al.  Optimization of the derivative expansion in the nonperturbative renormalization group , 2003 .

[63]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[64]  Fisher,et al.  Interface fluctuations in disordered systems: 5- epsilon expansion and failure of dimensional reduction. , 1986, Physical review letters.

[65]  C. Itzykson,et al.  Statistical Field Theory: Random geometry , 1989 .

[66]  Jean-Michel Caillol Non-perturbative renormalization group for simple fluids , 2006 .

[67]  Ulrich Ellwanger,et al.  Collective fields and flow equations , 1993 .

[68]  I. Herbut,et al.  renormalization group , 1999 .

[69]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[70]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[71]  Andrea Pelissetto,et al.  Critical behavior of O(2)⊗O(N) symmetric models , 2004, cond-mat/0405667.

[72]  Alessandro Strumia,et al.  Bubble nucleation rates for cosmological phase transitions , 1999 .

[73]  C. Wetterich,et al.  Scale dependence of the average potential around the maximum in φ4 theories , 1992 .

[74]  Miguel A Muñoz,et al.  Nonperturbative fixed point in a nonequilibrium phase transition. , 2005, Physical review letters.

[75]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[76]  Daniel F. Litim Derivative expansion and renormalisation group flows , 2001 .

[77]  C. Wetterich,et al.  Universality in phase transitions for ultracold fermionic atoms (31 pages) , 2006 .

[78]  Michael Strickland,et al.  Optimization of renormalization group flow , 1999, hep-th/9905206.

[79]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[80]  C. Wetterich,et al.  Average action and the renormalization group equations , 1991 .

[81]  B. Delamotte,et al.  Nonperturbative renormalization-group approach to frustrated magnets , 2004 .