On a class of matrices which arise in the numerical solution of Euler equations

SummaryWe study block matricesA=[Aij], where every blockAij∈ℂk,k is Hermitian andAii is positive definite. We call such a matrix a generalized H-matrix if its block comparison matrix is a generalized M-matrix. These matrices arise in the numerical solution of Euler equations in fluid flow computations and in the study of invariant tori of dynamical systems. We discuss properties of these matrices and we give some equivalent conditions for a matrix to be a generalized H-matrix.

[1]  D. Heller Some Aspects of the Cyclic Reduction Algorithm for Block Tridiagonal Linear Systems , 1976 .

[2]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[3]  L. Elsner,et al.  Convergence of block iterative methods for linear systems arising in the numerical solution of Euler equations , 1991 .

[4]  S. P. Spekreijse,et al.  Multiple grid and Osher''s scheme for the efficient solution of the steady Euler equations Applied N , 1986 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Luca Dieci,et al.  Block M-Matrices and Computation of Invariant Tori , 1992, SIAM J. Sci. Comput..

[7]  J. Ortega,et al.  Extensions of the Ostrowski-Reich theorem for SOR iterations , 1979 .

[8]  R. Varga On recurring theorems on diagonal dominance , 1976 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  E. Dick,et al.  A Multigrid Flux-Difference Splitting Method for Steady Incompressible Navier-Stokes Equations , 1990 .

[11]  Yves Robert,et al.  Regular incomplete factorizations of real positive definite matrices , 1982 .

[12]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[13]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[14]  J. Bramble,et al.  On a Finite Difference Analogue of an Elliptic Boundary Problem which is Neither Diagonally Dominant Nor of Non‐negative Type , 1964 .

[15]  R. Plemmons,et al.  Convergence of parallel multisplitting iterative methods for M-matrices , 1987 .