Analysis of Power Consumption and Linearity in Capacitive Digital-to-Analog Converters Used in Successive Approximation ADCs

Successive-approximation analog-to-digital converters (SA-ADCs) are widely used in ultra-low-power applications. In this paper, the power consumption and the linearity of capacitive-array digital-to-analog converters (DACs) employed in SA-ADCs are analyzed. Specifically, closed-form formulas for the power consumption as well as the standard deviation of INL and DNL for three commonly-used radix-2 architectures including the effect of parasitic capacitances are presented and the structures are compared. The proposed analysis can be employed in choosing the best architecture and optimizing it in both hand calculations and computer-aided-design tools. Measurement results of previously published works as well as simulation results of a 10-bit 10 kS/s SA-ADC confirm the accuracy of the proposed equations. It will be shown that, in spite of what commonly is assumed, although the total capacitance and the power consumption of those architectures employing attenuating capacitors seem to be smaller than conventional binary-weighted structures, the linearity requirements impose much larger unit capacitance to the structure such that the entire power consumption is larger.

[1]  C.J.B. Fayomi,et al.  A 1-V, 10-bit rail-to-rail successive approximation analog-to-digital converter in standard 0.18 /spl mu/m CMOS technology , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[2]  P. Gray,et al.  All-MOS charge redistribution analog-to-digital conversion techniques. I , 1975, IEEE Journal of Solid-State Circuits.

[3]  Mohamad Sawan,et al.  An Ultra-Low-Power Successive-Approximation-Based ADC for Implantable Sensing Devices , 2006, 2006 49th IEEE International Midwest Symposium on Circuits and Systems.

[4]  Yong Lian,et al.  A 1-V 60-µW 16-channel interface chip for implantable neural recording , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[5]  Eugenio Culurciello,et al.  An 8-bit 800-$muhboxW$1.23-MS/s Successive Approximation ADC in SOI CMOS , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  Franco Maloberti,et al.  A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[7]  In-Cheol Park,et al.  Capacitor array structure and switch control for energy-efficient SAR analog-to-digital converters , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[8]  K. Iniewski,et al.  Ultra Low Power Current-mode Algorithmic Analog-to-digital Converter Implemented In 0.18 /spl mu/m CMOS Technology For Wireless Sensor Network , 2006, Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006..

[9]  L.S.Y. Wong,et al.  A very low-power CMOS mixed-signal IC for implantable pacemaker applications , 2004, IEEE Journal of Solid-State Circuits.

[10]  Bertram E. Shi,et al.  IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS — I : REGULAR PAPERS , VOL . ? ? , NO . ? ? , ? ? ? ? , 2007 .

[11]  D.A. Hodges,et al.  All-MOS charge-redistribution analog-to-digital conversion techniques. II , 1975, IEEE Journal of Solid-State Circuits.

[12]  Kristofer S. J. Pister,et al.  An ultralow-energy ADC for Smart Dust , 2003, IEEE J. Solid State Circuits.

[13]  Hai Phuong. Le,et al.  Ultra-low-power variable-resolution successive approximation ADC for biomedical application , 2005 .

[14]  Jan Craninckx,et al.  A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  Qiuting Huang,et al.  Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with -79-dB THD , 1998 .

[16]  P. H. Saul,et al.  Successive approximation analog-to-digital conversion at video rates , 1981 .

[17]  Wei Xiong,et al.  A 3-V, 6-Bit C-2C Digital-to-Analog Converter Using Complementary Organic Thin-Film Transistors on Glass , 2009, IEEE Journal of Solid-State Circuits.

[18]  Jianhua Gan,et al.  Mixed-signal micro-controller for non-binary capacitor array calibration in data converter , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[19]  Doris Schmitt-Landsiedel,et al.  A 0.5V, 1µW successive approximation ADC , 2002 .

[20]  Bin-Da Liu,et al.  A new successive approximation architecture for low-power low-cost CMOS A/D converter , 2003, IEEE J. Solid State Circuits.

[21]  F. Kuttner A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[22]  E.K.F. Lee,et al.  A 1-V, 8-bit successive approximation ADC in standard CMOS process , 2000, IEEE Journal of Solid-State Circuits.

[23]  Rui Paulo Martins,et al.  Linearity analysis on a series-split capacitor array for high-speed SAR ADCs , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[24]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[25]  Brian P. Ginsburg,et al.  An energy-efficient charge recycling approach for a SAR converter with capacitive DAC , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[26]  G. Temes,et al.  Random errors in MOS capacitors , 1982 .

[27]  S. Gambini,et al.  Low-Power Successive Approximation Converter With 0.5 V Supply in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[28]  Yonghwan Kim,et al.  A low power consumption 10-bit rail-to-rail SAR ADC using a C-2C capacitor array , 2008, 2008 IEEE International Conference on Electron Devices and Solid-State Circuits.

[29]  Hao-Chiao Hong,et al.  A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC , 2007, IEEE Journal of Solid-State Circuits.

[30]  Jens Sauerbrey,et al.  A 0.5-V 1-μW successive approximation ADC , 2003, IEEE J. Solid State Circuits.

[31]  R. Genov,et al.  Multi-step binary-weighted capacitive digital-to-analog converter architecture , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[32]  Hoon-Ju Chung,et al.  C-2C digital-to-analogue converter on insulator , 1999 .

[33]  A.P. Chandrakasan,et al.  An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes , 2007, IEEE Journal of Solid-State Circuits.

[34]  Jianhua Gan,et al.  A non-binary capacitor array calibration circuit with 22-bit accuracy in successive approximation analog-to-digital converters , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[35]  C. Gendarme,et al.  CMOS Circuit Design, Layout, and Simulation, 2nd edition [Book Review] , 2006, IEEE Circuits and Devices Magazine.

[36]  Boris Murmann,et al.  System embedded ADC calibration for OFDM receivers , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  B.P. Ginsburg,et al.  500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC , 2007, IEEE Journal of Solid-State Circuits.

[38]  Lin Cong Pseudo C-2C ladder-based data converter technique , 2001 .

[39]  Hoi-Jun Yoo,et al.  A Fully Integrated Digital Hearing Aid Chip With Human Factors Considerations , 2008, IEEE Journal of Solid-State Circuits.

[40]  Jan Van der Spiegel,et al.  A 10-bit 8.3MS/s switched-current successive approximation ADC for column-parallel imagers , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[41]  Rui Paulo Martins,et al.  A power-efficient capacitor structure for high-speed charge recycling SAR ADCs , 2008, 2008 15th IEEE International Conference on Electronics, Circuits and Systems.

[42]  Karim Abdelhalim,et al.  The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface , 2010, IEEE Transactions on Biomedical Circuits and Systems.