Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems

The direct spectral problem for the matrix Dirac type systems with locally summable potentials and the inverse spectral problem for the matrix Dirac type systems with locally bounded potentials are solved on the interval and on the half-line. A direct procedure to recover the potential by the Weyl–Titchmarsh function is given also. Some important corollaries on the high-energy asymptotics of the Weyl–Titchmarsh functions and on the local uniqueness for the corresponding inverse problem follow. New results are obtained for the general type canonical systems also.

[1]  Lev A. Sakhnovich,et al.  Spectral Theory of Canonical Differential Systems. Method of Operator Identities , 1999 .

[2]  Inverse Spectral Problem Related to the N-wave Equation , 2000 .

[3]  Lev A. Sakhnovich Integral Equations with Difference Kernels on Finite Intervals , 1995 .

[4]  A. Sakhnovich Iterated Backlund–Darboux Transform for Canonical Systems☆ , 1997 .

[5]  B. Simon Some Schrödinger operators with dense point spectrum , 1997 .

[6]  A. Sakhnovich,et al.  SPECTRAL FUNCTIONS OF A CANONICAL SYSTEM OF ORDER $ 2n$ , 1992 .

[7]  M. A. Kaashoek,et al.  Canonical Systems with Rational Spectral Densities: Explicit Formulas and Applications , 1998 .

[8]  Israel Gohberg,et al.  Topics in differential and integral equations and operator theory , 1983 .

[9]  On the number of square integrable solutions and self-adjointness of symmetric first order systems of differential equations , 2000, math/0012080.

[10]  J. Zubelli Rational solutions of nonlinear evolution equations, vertex operators, and bispectrality , 1992 .

[11]  Ronald R. Coifman,et al.  Scattering and inverse scattering for first order systems , 1984 .

[12]  J. Zubelli,et al.  Bundle bispectrality for matrix differential equations , 2001 .

[13]  Percy Deift,et al.  On the Absolutely Continuous Spectrum¶of One-Dimensional Schrödinger Operators¶with Square Summable Potentials , 1999 .

[14]  H. Dym,et al.  Positive Definite Extensions, Canonical Equations and Inverse Problems , 1984 .

[15]  Barry Simon,et al.  A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.

[16]  F. Grünbaum,et al.  Differential equations in the spectral parameter , 1986 .

[17]  A. B. D. Monvel,et al.  Scattering problem for the Zakharov-Shabat equations on the semi-axis , 2000 .

[18]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[19]  A. Fokas On the integrability of linear and nonlinear partial differential equations , 2000 .

[20]  B. Simon,et al.  The xi function , 1996 .

[21]  Inverse Scattering Transform for Systems with Rational Spectral Dependence , 1995 .

[22]  J. K. Shaw,et al.  Hamiltonian systems of limit point or limit circle type with both endpoints singular , 1983 .

[23]  A. Sakhnovich,et al.  Dressing procedure for solutions of non-linear equations and the method of operator identities , 1994 .

[24]  F. Gesztesy,et al.  On Local Borg–Marchenko Uniqueness Results , 2000 .

[25]  Lev A. Sakhnovich,et al.  Factorization problems and operator identities , 1986 .

[26]  Bernard C. Levy,et al.  The Schur algorithm and its applications , 1985 .

[27]  I. Gohberg,et al.  Scattering problems for a canonical system with a pseudo-exponential potential , 2002 .

[28]  Israel Gohberg,et al.  Theory and Applications of Volterra Operators in Hilbert Space , 2004 .

[29]  C. Tretter,et al.  Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter , 2001 .

[30]  Steve Clark,et al.  Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators , 2001 .

[31]  M. Malamud,et al.  The Inverse Spectral Problem for First Order Systems on the Half Line , 1998, math/9805033.