Doublecortin-like Kinase Controls Neurogenesis by Regulating Mitotic Spindles and M Phase Progression

[1]  J. Gleeson,et al.  doublecortin-like kinase Functions with doublecortin to Mediate Fiber Tract Decussation and Neuronal Migration , 2006, Neuron.

[2]  Hussain Jafri,et al.  A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size , 2005, Nature Genetics.

[3]  A. Edelman,et al.  Doublecortin Kinase-2, a Novel Doublecortin-related Protein Kinase Associated with Terminal Segments of Axons and Dendrites* , 2005, Journal of Biological Chemistry.

[4]  J. Sanes,et al.  Mammalian SAD Kinases Are Required for Neuronal Polarization , 2005, Science.

[5]  C. Englund,et al.  Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex , 2005, The Journal of Neuroscience.

[6]  L. Tsai,et al.  Ndel1 Operates in a Common Pathway with LIS1 and Cytoplasmic Dynein to Regulate Cortical Neuronal Positioning , 2004, Neuron.

[7]  M. Hatten,et al.  Par6α signaling controls glial-guided neuronal migration , 2004, Nature Neuroscience.

[8]  E. Pierce,et al.  The Retinitis Pigmentosa 1 Protein Is a Photoreceptor Microtubule-Associated Protein , 2004, The Journal of Neuroscience.

[9]  Ronald A Milligan,et al.  Mechanism of microtubule stabilization by doublecortin. , 2004, Molecular cell.

[10]  A. Wynshaw-Boris,et al.  Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration , 2004, The Journal of cell biology.

[11]  W. Huttner,et al.  Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells , 2004, The EMBO journal.

[12]  L. Tsai,et al.  A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease , 2004, Current Opinion in Neurobiology.

[13]  C. Woods,et al.  Human microcephaly , 2004, Current Opinion in Neurobiology.

[14]  L. Tsai,et al.  Cdk5 Phosphorylation of Doublecortin Ser297 Regulates Its Effect on Neuronal Migration , 2004, Neuron.

[15]  S. Mcconnell,et al.  Doublecortin Microtubule Affinity Is Regulated by a Balance of Kinase and Phosphatase Activity at the Leading Edge of Migrating Neurons , 2004, Neuron.

[16]  R. Ramos,et al.  RNAi reveals doublecortin is required for radial migration in rat neocortex , 2003, Nature Neuroscience.

[17]  A. B. Huber,et al.  Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. , 2003, Annual review of neuroscience.

[18]  C. Walsh,et al.  Protein-truncating mutations in ASPM cause variable reduction in brain size. , 2003, American journal of human genetics.

[19]  D. Geschwind Tau Phosphorylation, Tangles, and Neurodegeneration The Chicken or the Egg? , 2003, Neuron.

[20]  W. Harris,et al.  Neurogenesis and the Cell Cycle , 2003, Neuron.

[21]  M. Ehlers,et al.  Neuronal Polarity and Trafficking , 2003, Neuron.

[22]  L. Tsai,et al.  Serine 732 Phosphorylation of FAK by Cdk5 Is Important for Microtubule Organization, Nuclear Movement, and Neuronal Migration , 2003, Cell.

[23]  D. Glover,et al.  Polar expeditions — provisioning the centrosome for mitosis , 2003, Nature Cell Biology.

[24]  T Tarui,et al.  Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. , 2003, Cerebral cortex.

[25]  C. Walsh,et al.  The DCX-domain tandems of doublecortin and doublecortin-like kinase , 2003, Nature Structural Biology.

[26]  R. Moroni,et al.  The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines , 2003, Oncogene.

[27]  Pasko Rakic,et al.  Mitotic spindle rotation and mode of cell division in the developing telencephalon , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Alexander F. Markham,et al.  ASPM is a major determinant of cerebral cortical size , 2002, Nature Genetics.

[29]  N. Rusan,et al.  Reorganization of the microtubule array in prophase/prometaphase requires cytoplasmic dynein-dependent microtubule transport , 2002, The Journal of cell biology.

[30]  X. Estivill,et al.  Dyrk1A Haploinsufficiency Affects Viability and Causes Developmental Delay and Abnormal Brain Morphology in Mice , 2002, Molecular and Cellular Biology.

[31]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[32]  Hussain Jafri,et al.  Identification of microcephalin, a protein implicated in determining the size of the human brain. , 2002, American journal of human genetics.

[33]  S. Halpain,et al.  MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments , 2002, The Journal of cell biology.

[34]  F. Tejedor,et al.  Mnb/Dyrk1A is transiently expressed and asymmetrically segregated in neural progenitor cells at the transition to neurogenic divisions. , 2002, Developmental biology.

[35]  O. Reiner,et al.  Alternative Splice Variants of Doublecortin-like Kinase Are Differentially Expressed and Have Different Kinase Activities* , 2002, The Journal of Biological Chemistry.

[36]  L. Tsai,et al.  Life is a journey: a genetic look at neocortical development , 2002, Nature Reviews Genetics.

[37]  R. Vallee,et al.  Dynein at the cortex. , 2002, Current opinion in cell biology.

[38]  P. Gönczy,et al.  zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. , 2001, Developmental cell.

[39]  S. Mcconnell,et al.  Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Rubenstein,et al.  Tbr1 Regulates Differentiation of the Preplate and Layer 6 , 2001, Neuron.

[41]  D. Cleveland,et al.  Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. , 2001, Current opinion in cell biology.

[42]  C. Walsh,et al.  DCAMKL1 Encodes a Protein Kinase with Homology to Doublecortin that Regulates Microtubule Polymerization , 2000, The Journal of Neuroscience.

[43]  C. Walsh,et al.  Patient Mutations in Doublecortin Define a Repeated Tubulin-binding Domain* , 2000, The Journal of Biological Chemistry.

[44]  O. Reiner,et al.  Doublecortin-like Kinase Is Associated with Microtubules in Neuronal Growth Cones , 2000, Molecular and Cellular Neuroscience.

[45]  L. Tsai,et al.  Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1 , 2000, Nature Cell Biology.

[46]  J. Ávila,et al.  Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function , 2000, Progress in Neurobiology.

[47]  S. Pietrokovski,et al.  Doublecortin mutations cluster in evolutionarily conserved functional domains. , 2000, Human molecular genetics.

[48]  O. Reiner,et al.  KIAA0369, doublecortin‐like kinase, is expressed during brain development , 1999, Journal of neuroscience research.

[49]  C. Walsh,et al.  Doublecortin Is a Microtubule-Associated Protein and Is Expressed Widely by Migrating Neurons , 1999, Neuron.

[50]  P. Baas Microtubules and Neuronal Polarity Lessons from Mitosis , 1999, Neuron.

[51]  Dan Goldowitz,et al.  The cells and molecules that make a cerebellum , 1998, Trends in Neurosciences.

[52]  D. Ledbetter,et al.  Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality , 1998, Nature Genetics.

[53]  Yuh Nung Jan,et al.  Asymmetric cell division , 1998, Nature.

[54]  I. Scheffer,et al.  doublecortin , a Brain-Specific Gene Mutated in Human X-Linked Lissencephaly and Double Cortex Syndrome, Encodes a Putative Signaling Protein , 1998, Cell.

[55]  O. Reiner,et al.  Reduction of microtubule catastrophe events by LIS1, platelet‐activating factor acetylhydrolase subunit , 1997, The EMBO journal.

[56]  M. Nieto Molecular Biology of Axon Guidance , 1996, Neuron.

[57]  H. Hotani,et al.  Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics , 1995, The Journal of cell biology.

[58]  H. Arai,et al.  Miller-Dicker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase , 1994, Nature.

[59]  H. Arai,et al.  Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor , 1994, Nature.

[60]  D. Ledbetter,et al.  Isolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit-like repeats , 1993, Nature.

[61]  A. Hyman,et al.  Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. , 1992, Molecular biology of the cell.

[62]  R. Tucker,et al.  The roles of microtubule-associated proteins in brain morphogenesis: a review , 1990, Brain Research Reviews.

[63]  E D Salmon,et al.  Tubulin dynamics in cultured mammalian cells , 1984, The Journal of cell biology.

[64]  L. Peris,et al.  Tau Protein Function in Axonal Formation , 2004, Neurochemical Research.

[65]  M. Hatten,et al.  Par6alpha signaling controls glial-guided neuronal migration. , 2004, Nature neuroscience.

[66]  L. Cassimeris,et al.  Regulation of microtubule-associated proteins. , 2001, International review of cytology.

[67]  A. Hyman,et al.  Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts , 1999, Nature Cell Biology.

[68]  Nicholas H. Brown,et al.  Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system , 1999, Nature Cell Biology.

[69]  D. Ledbetter,et al.  Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. , 1993, Nature.

[70]  E. Nishida,et al.  Mitogen-activated-protein-kinase-catalyzed phosphorylation of microtubule-associated proteins, microtubule-associated protein 2 and microtubule-associated protein 4, induces an alteration in their function. , 1992, European journal of biochemistry.