Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres

We discuss the compound set of two dielectric microspheres to confine light in a three dimensional region of dimensions on the order of the wavelength when the spheres are illuminated by a plane wave. This simple configuration enables the reduction of the longitudinal dimension of so called photonic jets, together with a strong focusing effect. The beam shaped in that way is suitable for applications requiring high longitudinal resolutions and/or strong peak intensities.

[1]  N. Arnold,et al.  Three-dimensional effects in dry laser cleaning , 2003 .

[2]  Allen Taflove,et al.  Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. , 2005, Optics express.

[3]  Brian Stout,et al.  Light diffraction by a three-dimensional object: differential theory. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Anne Sentenac,et al.  Subdiffraction light focusing on a grating substrate. , 2008, Physical review letters.

[5]  Yoshitate Takakura,et al.  Properties of a three-dimensional photonic jet. , 2005, Optics letters.

[6]  P. Leiderer,et al.  Optical field enhancement effects in laser-assisted particle removal , 2001 .

[7]  Hervé Rigneault,et al.  Direct imaging of photonic nanojets. , 2008, Optics express.

[8]  Klaus Piglmayer,et al.  Laser-induced surface patterning by means of microspheres , 2002 .

[9]  Allen Taflove,et al.  Photonic nanojet-enabled optical data storage. , 2008, Optics express.

[10]  Yongfeng Lu,et al.  Enhanced Raman scattering by self-assembled silica spherical microparticles , 2007 .

[11]  L. W. Davis,et al.  Theory of electromagnetic beams , 1979 .

[12]  Susumu Noda,et al.  Seeking the Ultimate Nanolaser , 2006, Science.

[13]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[14]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[15]  W. Challener,et al.  Optics of photonic nanojets. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Euan McLeod,et al.  Subwavelength direct-write nanopatterning using optically trapped microspheres. , 2008, Nature nanotechnology.

[17]  Allen Taflove,et al.  Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. , 2004, Optics express.

[18]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[19]  A. Bouhelier,et al.  Submicrometer in-plane integrated surface plasmon cavities. , 2007, Nano letters.

[20]  N. Arnold,et al.  Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie , 2006, physics/0606025.

[21]  Nicolas Bonod,et al.  Spectral analysis of three-dimensional photonic jets. , 2008, Optics express.

[22]  Hervé Rigneault,et al.  Three-dimensional subwavelength confinement of light with dielectric microspheres. , 2009, Optics express.

[23]  Hervé Rigneault,et al.  Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. , 2008, Optics express.

[24]  A. Borisov,et al.  Bound States in the continuum in photonics. , 2008, Physical review letters.

[25]  Marc Sentis,et al.  Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays. , 2008, Small.

[26]  Jacques Lafait,et al.  A transfer matrix approach to local field calculations in multiple-scattering problems , 2002 .

[27]  R. D. Hartschuh,et al.  Near-field Raman imaging using optically trapped dielectric microsphere , 2008 .