An adaptive moving mesh method with static rezoning for partial differential equations

[1]  J. Hyman Accurate Monotonicity Preserving Cubic Interpolation , 1983 .

[2]  Joseph E. Flaherty,et al.  A moving-mesh finite element method with local refinement for parabolic partial differential equations , 1986 .

[3]  Joseph E. Flaherty,et al.  A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations , 1986 .

[4]  E. Dorfi,et al.  Simple adaptive grids for 1-d initial value problems , 1987 .

[5]  Linda R. Petzold,et al.  Observations on an adaptive moving grid method for one-dimensional systems of partial differential equations , 1987 .

[6]  Joke Blom,et al.  A moving grid method for one-dimensional PDEs based on the method of lines , 1988 .

[7]  J. Verwer,et al.  A numerical study of three moving-grid methods for one-dimensional partial differential equations which are based on the method of lines , 1990 .

[8]  J. Hyman,et al.  Dynamic rezone methods for partial differential equations in one space dimension , 1989 .

[9]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[10]  Joseph E. Flaherty,et al.  Integrated space-time adaptive hp -refinement methods for parabolic systems , 1995 .

[11]  L. Petzold,et al.  Moving Mesh Methods with Upwinding Schemes for Time-Dependent PDEs , 1997 .

[12]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..

[13]  Shengtai Li,et al.  Adaptive mesh methods and software for time-dependent partial differential equations , 1998 .

[14]  Martin Berzins,et al.  On spatial adaptivity and interpolation when using the method of lines , 1998 .

[15]  A. Wouwer,et al.  Adaptive Method of Lines , 2001 .

[16]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .