Uniformly superconvergent analysis of an efficient two-grid method for nonlinear Bi-wave singular perturbation problem

Abstract The main aim of this paper is to present a two-grid method for the fourth order nonlinear Bi-wave singular perturbation problem with low order nonconforming finite element based on the Ciarlet–Raviart scheme. The existence and uniqueness of the approximation solution are demonstrated through the Brouwer fixed point theorem and the uniform superconvergent estimates in the broken H 1 − norm and L 2 − norm are obtained, which are independent of the perturbation parameter δ. Some numerical results indicate that the proposed method is indeed an efficient algorithm.

[1]  R. Zhdanov,et al.  Symmetry reduction and some exact solutions of nonlinear biwave equations , 1996 .

[2]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[3]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[4]  Hua Li,et al.  A new robust C0-type nonconforming triangular element for singular perturbation problems , 2010, Appl. Math. Comput..

[5]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[6]  Xiaobing Feng,et al.  Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors , 2011, Math. Comput..

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Wei Liu,et al.  A two-grid algorithm based on expanded mixed element discretizations for strongly nonlinear elliptic equations , 2014, Numerical Algorithms.

[9]  Houchao Zhang,et al.  Superconvergence analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation , 2018 .

[10]  Dongyang Shi,et al.  Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations , 2013, Appl. Math. Comput..

[11]  Dongyang Shi,et al.  Superconvergence analysis of a two-grid method for semilinear parabolic equations , 2018, Appl. Math. Lett..

[12]  Dongyang Shi,et al.  Uniform superconvergence analysis of Ciarlet‐Raviart scheme for Bi‐wave singular perturbation problem , 2018, Mathematical Methods in the Applied Sciences.

[13]  Sangita Yadav,et al.  Superconvergent Discontinuous Galerkin Methods for Linear Non-selfadjoint and Indefinite Elliptic Problems , 2013, J. Sci. Comput..

[14]  Dongyang Shi,et al.  A new error analysis of Bergan's energy-orthogonal element for two-sided displacement obstacle problem of clamped plate☆ , 2016 .

[15]  Qiang Du,et al.  Studies of a Ginzburg-Landau Model for d-Wave Superconductors , 1999, SIAM J. Appl. Math..

[16]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[17]  Keyan Wang,et al.  Two-grid mixed finite element method for nonlinear hyperbolic equations , 2017, Comput. Math. Appl..

[18]  Dongyang Shi,et al.  Uniform superconvergent analysis of a new mixed finite element method for nonlinear Bi-wave singular perturbation problem , 2019, Appl. Math. Lett..

[19]  Fabio Milner,et al.  Mixed finite element methods for quasilinear second-order elliptic problems , 1985 .

[20]  Dongyang Shi,et al.  Two-level mixed finite element methods for the Navier–Stokes equations with damping , 2019, Journal of Mathematical Analysis and Applications.

[21]  Jinchao Xu,et al.  Two‐grid methods for time‐harmonic Maxwell equations , 2013, Numer. Linear Algebra Appl..

[22]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[23]  Xiaobing Feng,et al.  Finite element methods for a bi-wave equation modeling d-wave superconductors , 2009 .

[24]  Dongyang Shi,et al.  Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation , 2017, Appl. Math. Comput..

[25]  Dongyang Shi,et al.  APPROXIMATION OF NONCONFORMING QUASI-WILSON ELEMENT FOR SINE-GORDON EQUATIONS * , 2013 .

[26]  Jincheng Ren,et al.  Nonconforming mixed finite element approximation to the stationary Navier–Stokes equations on anisotropic meshes , 2009 .