Shallow-Water Benthic Habitat Mapping Using Drone with Object Based Image Analyses

Spatial information on benthic habitats in Wangiwangi island waters, Wakatobi District, Indonesia was very limited in recent years. However, this area is one of the marine tourism destinations and one of the Indonesia’s triangle coral reef regions with a very complex coral reef ecosystem. The drone technology that has rapidly developed in this decade, can be used to map benthic habitats in this area. This study aimed to map shallow-water benthic habitats using drone technology in the region of Wangiwangi island waters, Wakatobi District, Indonesia. The field data were collected using a 50 × 50 cm squared transect of 434 observation points in March–April 2017. The DJI Phantom 3 Pro drone with a spatial resolution of 5.2 × 5.2 cm was used to acquire aerial photographs. Image classifications were processed using object-based image analysis (OBIA) method with contextual editing classification at level 1 (reef level) with 200 segmentation scale and several segmentation scales at level 2 (benthic habitat). For level 2 classification, we found that the best algorithm to map benthic habitat was the support vector machine (SVM) algorithm with a segmentation scale of 50. Based on field observations, we produced 12 and 9 benthic habitat classes. Using the OBIA method with a segmentation value of 50 and the SVM algorithm, we obtained the overall accuracy of 77.4% and 81.1% for 12 and 9 object classes, respectively. This result improved overall accuracy up to 17% in mapping benthic habitats using Sentinel-2 satellite data within the similar region, similar classes, and similar method of classification analyses.

[1]  Heather Reese,et al.  Combining Spectral Data and a DSM from UAS-Images for Improved Classification of Non-Submerged Aquatic Vegetation , 2017, Remote. Sens..

[2]  J. Gonçalves,et al.  UAV photogrammetry for topographic monitoring of coastal areas , 2015 .

[3]  J. E. Rasmussen,et al.  Potential uses of small unmanned aircraft systems (UAS) in weed research , 2013 .

[4]  P. Bazzoffi Measurement of rill erosion through a new UAV-GIS methodology , 2015 .

[5]  V. Siregar,et al.  GEOMORPHOLOGY ZONATION AND COLUMN CORRECTION FOR BOTTOM SUBSTRAT MAPPING USING QUICKBIRD IMAGE , 2017 .

[6]  N. Adi,et al.  Benthic Habitat Mapping by Combining Lyzenga’s Optical Model and Relative Water Depth Model in Lintea Island, Southeast Sulawesi , 2017 .

[7]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[8]  B. Nababan,et al.  Accuracy assessment of several classification algorithms with and without hue saturation intensity input features on object analyses on benthic habitat mapping in the Pajenekang Island Waters, South Sulawesi , 2020, IOP Conference Series: Earth and Environmental Science.

[9]  Caiyun Zhang,et al.  Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem , 2015 .

[10]  Konstantinos N. Topouzelis,et al.  Comparison of True-Color and Multispectral Unmanned Aerial Systems Imagery for Marine Habitat Mapping Using Object-Based Image Analysis , 2020, Remote. Sens..

[11]  Frédéric Pouget,et al.  Monitoring the Topography of a Dynamic Tidal Inlet Using UAV Imagery , 2016, Remote. Sens..

[12]  Monica Rivas Casado,et al.  Quantifying the Effect of Aerial Imagery Resolution in Automated Hydromorphological River Characterisation , 2016, Remote. Sens..

[13]  Caiyun Zhang,et al.  Object-based Vegetation Mapping in the Kissimmee River Watershed Using HyMap Data and Machine Learning Techniques , 2013, Wetlands.

[14]  V. Siregar,et al.  KLASIFIKASI MULTIKSKALA UNTUK PEMETAAN ZONA GEOMORFOLOGI DAN HABITAT BENTIK MENGGUNAKAN METODE OBIA DI PULAU PARI (MULTISCALE CLASSIFICATION FOR GEOMORPHIC ZONE AND BENTHIC HABITATS MAPPING USING OBIA METHOD IN PARI ISLAND) , 2018 .

[15]  Pramaditya Wicaksono,et al.  Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning Classification Algorithms , 2019, Remote. Sens..

[16]  Daniele Ventura,et al.  Mapping and Classification of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA) , 2018, Remote. Sens..

[17]  Juha Hyyppä,et al.  Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging , 2017, Remote. Sens..

[18]  S. Phinn,et al.  Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs , 2012 .

[19]  Salah Sukkarieh,et al.  Architectures for Cooperative Airborne Simultaneous Localisation and Mapping , 2009, J. Intell. Robotic Syst..

[20]  Tarun Teja Kondraju,et al.  Evaluation of various image classification techniques on Landsat to identify coral reefs , 2014 .

[21]  Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA) , 2020 .

[22]  A. Sunuddin,et al.  PEMETAAN HABITAT DASAR DAN ESTIMASI STOK IKAN TERUMBU DENGAN CITRA SATELIT RESOLUSI TINGGI SHALLOW WATER HABITAT MAPPING AND REEF FISH STOCK ESTIMATION USING HIGH RESOLUTION SATELLITE DATA , 2013 .

[23]  Peter J. Mumby,et al.  Remote sensing of the coastal zone: An overview and priorities for future research , 2003 .

[24]  M J C Crabbe,et al.  Preliminary comparison of three coral reef sites in the Wakatobi Marine National Park (SE Sulawesi, Indonesia): estimated recruitment dates compared with Discovery Bay, Jamaica , 2004 .

[25]  Chunhua Zhang,et al.  The application of small unmanned aerial systems for precision agriculture: a review , 2012, Precision Agriculture.

[26]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[27]  Indra Jaya,et al.  Object-based Image Analysis for Coral Reef Benthic Habitat Mapping with Several Classification Algorithms , 2015 .

[28]  Sarah L. Benfield,et al.  Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: a comparison of optical satellite sensors and classification methodologies , 2007 .

[29]  P. Mumby,et al.  Benefits of water column correction and contextual editing for mapping coral reefs , 1998 .

[30]  F. Bruno,et al.  Ultra-High-Resolution Mapping of Posidonia oceanica (L.) Delile Meadows through Acoustic, Optical Data and Object-based Image Classification , 2020, Journal of Marine Science and Engineering.

[31]  Fernando Carvajal-Ramírez,et al.  Evaluation of Fire Severity Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV , 2019, Remote. Sens..

[32]  Robert J. Moorhead,et al.  Using unmanned aerial vehicles for high-resolution remote sensing to map invasive Phragmites australis in coastal wetlands , 2017 .

[33]  V. Siregar,et al.  APLIKASI CITRA QUICKBIRD UNTUK PEMETAAN 3D SUBSTRAT DASAR DI GUSUNG KARANG , 2012 .

[34]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[35]  Peng Gong,et al.  Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery , 2004 .

[36]  Bahareh Kalantar,et al.  Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis , 2017 .

[37]  A. Hodgson,et al.  Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study , 2013, PloS one.

[38]  Margaret Kalacska,et al.  Freshwater Fish Habitat Complexity Mapping Using Above and Underwater Structure-From-Motion Photogrammetry , 2018, Remote. Sens..

[39]  R. Mount,et al.  Rapid monitoring of extent and condition of Seagrass habitats with aerial photography “mega‐Quadrats” , 2007 .

[40]  Ivan Lizarazo,et al.  Automatic mapping of land surface elevation changes from UAV-based imagery , 2017 .

[41]  Frédéric Baret,et al.  Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure , 2017, Remote. Sens..

[42]  Stuart R. Phinn,et al.  Multi-site evaluation of IKONOS data for classification of tropical coral reef environments , 2003 .

[43]  Matthew Bardeen,et al.  Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV): A Case Study in a Commercial Vineyard , 2017, Remote. Sens..

[44]  Terje Gobakken,et al.  Biomass Estimation Using 3D Data from Unmanned Aerial Vehicle Imagery in a Tropical Woodland , 2016, Remote. Sens..

[45]  Thomas Schneider,et al.  Quantification of Extent, Density, and Status of Aquatic Reed Beds Using Point Clouds Derived from UAV-RGB Imagery , 2018, Remote. Sens..

[46]  Q. Guo,et al.  An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China , 2017 .

[47]  YangQuan Chen,et al.  Autopilots for small unmanned aerial vehicles: A survey , 2010 .

[48]  Luís Pádua,et al.  UAS, sensors, and data processing in agroforestry: a review towards practical applications , 2017 .

[49]  Dony Kushardono,et al.  PEMETAAN EKOSISTEM LAMUN DENGAN DAN TANPA KOREKSI KOLOM AIR DI PERAIRAN PULAU PAJENEKANG, SULAWESI SELATAN , 2020, Jurnal Ilmu dan Teknologi Kelautan Tropis.

[50]  Caiyun Zhang,et al.  Object-based benthic habitat mapping in the Florida Keys from hyperspectral imagery , 2013 .

[51]  Anuar Ahmad,et al.  Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle , 2014 .

[52]  David J. Smith,et al.  Spatio-temporal coral disease dynamics in the Wakatobi Marine National Park, South-East Sulawesi, Indonesia. , 2009, Diseases of aquatic organisms.

[53]  Andrea Berton,et al.  Forestry applications of UAVs in Europe: a review , 2017 .

[54]  Chris Roelfsema,et al.  Evaluating eight field and remote sensing approaches for mapping the benthos of three different coral reef environments in Fiji , 2008, Asia-Pacific Remote Sensing.

[55]  E. Ghoneim,et al.  Integrating Remote Sensing and Field Survey to Map Shallow Water Benthic Habitat for the Kingdom of Bahrain , 2017 .

[56]  A. S. Adji SUITABILITY ANALYSIS OF MULTISPECTRAL SATELLITE SENSORS FOR MAPPING CORAL REEFS IN INDONESIA CASE STUDY: WAKATOBI MARINE NATIONAL PARK , 2015 .

[57]  Pavel Pechac,et al.  A New Propagation Channel Synthesizer for UAVs in the Presence of Tree Canopies , 2017, Remote. Sens..

[58]  Rafael García,et al.  Image-Based Coral Reef Classification and Thematic Mapping , 2013, Remote. Sens..

[59]  David J. Smith,et al.  Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia , 2007 .

[60]  Antoine Collin,et al.  Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques , 2017, Coral Reefs.

[61]  James P. Panjaitan,et al.  PEMETAAN HABITAT BENTIK BERBASIS OBJEK MENGGUNAKAN CITRA SENTINEL-2 DI PERAIRAN PULAU WANGI-WANGI KABUPATEN WAKATOBI , 2018, Jurnal Ilmu dan Teknologi Kelautan Tropis.

[62]  Jizhou Lai,et al.  Autonomous cyanobacterial harmful algal blooms monitoring using multirotor UAS , 2017 .

[63]  James C. Gibeaut,et al.  Using UAS Hyperspatial RGB Imagery for Identifying Beach Zones along the South Texas Coast , 2017, Remote. Sens..

[64]  Mark A. Fonstad,et al.  Comparing remote-sensing techniques collecting bathymetric data from a gravel-bed river , 2017 .

[65]  Sebastián Castillo-Carrión,et al.  Autonomous 3D metric reconstruction from uncalibrated aerial images captured from UAVs , 2017 .

[66]  T. Schmugge,et al.  Research Article: Using Unmanned Aerial Vehicles for Rangelands: Current Applications and Future Potentials , 2006 .

[67]  Anthony Finn,et al.  Three-Dimensional UAV-Based Atmospheric Tomography , 2013 .

[68]  V. Siregar,et al.  PEMETAAN ZONA GEOMORFOLOGI EKOSISTEM TERUMBU KARANG MENGGUNAKAN METODE OBIA, STUDI KASUS DI PULAU PARI (GEOMORPHIC ZONES MAPPING OF CORAL REEF ECOSYSTEM WITH OBIA METHOD, CASE STUDY IN PARI ISLAND) , 2015 .

[69]  J. Stangl,et al.  UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria , 2017 .