A PAC-Bayes Sample-compression Approach to Kernel Methods
暂无分享,去创建一个
François Laviolette | Alexandre Lacoste | Mario Marchand | Pascal Germain | Sara Shanian | M. Marchand | Pascal Germain | François Laviolette | Alexandre Lacoste | Sara Shanian
[1] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[2] W. W. Daniel. Applied Nonparametric Statistics , 1979 .
[3] S. Shott,et al. Nonparametric Statistics , 2018, The Encyclopedia of Archaeological Sciences.
[4] O. Catoni. PAC-BAYESIAN SUPERVISED CLASSIFICATION: The Thermodynamics of Statistical Learning , 2007, 0712.0248.
[5] Yoav Freund,et al. Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.
[6] David A. McAllester. PAC-Bayesian Stochastic Model Selection , 2003, Machine Learning.
[7] Manfred K. Warmuth,et al. Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 1995, Machine Learning.
[8] Maya R. Gupta,et al. Learning kernels from indefinite similarities , 2009, ICML '09.
[9] Maya R. Gupta,et al. Similarity-based Classification: Concepts and Algorithms , 2009, J. Mach. Learn. Res..
[10] John Shawe-Taylor,et al. The Set Covering Machine , 2003, J. Mach. Learn. Res..
[11] Andreas Maurer,et al. A Note on the PAC Bayesian Theorem , 2004, ArXiv.
[12] François Laviolette,et al. PAC-Bayes Risk Bounds for Stochastic Averages and Majority Votes of Sample-Compressed Classifiers , 2007, J. Mach. Learn. Res..
[13] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[14] François Laviolette,et al. From PAC-Bayes Bounds to KL Regularization , 2009, NIPS.