Double scale analysis of a Schrödinger-Poisson system with quantum wells and macroscopic nonlinearities in dimension 2 and 3

We consider the stationary Schrodinger-Poisson model with a background potential describing a quantum well. The Hamiltonian of this system composes of contributions the background potential well plus a nonlinear repulsive term which extends on different length scales with ratio parametrized by the small parameter h. With a partition function which forces the particles to remain in the quantum well, the limit h?0 in the nonlinear system leads to different asymptotic behaviours, including spectral renormalization, depending on the dimensions 1, 2 or 3.

[1]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[2]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[3]  B. Simon Trace ideals and their applications , 1979 .

[4]  Carlo Presilla,et al.  On Schrödinger Equations with Concentrated Nonlinearities , 1995 .

[5]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[6]  Bernard Helffer,et al.  Multiple wells in the semi-classical limit I , 1984 .

[7]  Bernard Helffer,et al.  Semi-Classical Analysis for the Schrödinger Operator and Applications , 1988 .

[8]  Virginie Bonnaillie-Noël,et al.  Computing the steady states for an asymptotic model of quantum transport in resonant heterostructures , 2006, J. Comput. Phys..

[9]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[10]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[11]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[12]  Galán,et al.  Self-oscillations of domains in doped GaAs-AlAs superlattices. , 1995, Physical review. B, Condensed matter.

[13]  Far from equilibrium steady states of 1D-Schrodinger-Poisson systems with quantum wells II , 2009 .

[14]  C. Presilla,et al.  Transport properties in resonant tunneling heterostructures , 1996, cond-mat/9607088.

[15]  F. Nier,et al.  Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells I , 2008 .

[16]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[17]  Michael Reed,et al.  Methods of modern mathematical physics (vol.) I : functional analysis / Reed Michael, Barry Simon , 1980 .

[18]  F. Nier A variational formulation of schrödinger-poisson systems in dimension d ≤ 3 , 1993 .