Sampling and Learning Mallows and Generalized Mallows Models Under the Cayley Distance
暂无分享,去创建一个
[1] Ariel D. Procaccia,et al. When do noisy votes reveal the truth? , 2013, EC '13.
[2] Marina Meila,et al. Consensus Ranking with Signed Permutations , 2013, AISTATS.
[3] David J. Kriegman,et al. Locally Uniform Comparison Image Descriptor , 2012, NIPS.
[4] Alexander Mendiburu,et al. Introducing the Mallows Model on Estimation of Distribution Algorithms , 2011, ICONIP.
[5] Craig Boutilier,et al. Learning Mallows Models with Pairwise Preferences , 2011, ICML.
[6] Alexander Gnedin,et al. The two-sided infinite extension of the Mallows model for random permutations , 2011, Adv. Appl. Math..
[7] S. Evans,et al. Trickle-down processes and their boundaries , 2010, 1010.0453.
[8] Marina Meila,et al. Dirichlet Process Mixtures of Generalized Mallows Models , 2010, UAI.
[9] Christian Komusiewicz,et al. Average parameterization and partial kernelization for computing medians , 2010, J. Comput. Syst. Sci..
[10] Eyke Hüllermeier,et al. A New Instance-Based Label Ranking Approach Using the Mallows Model , 2009, ISNN.
[11] Marina Meila,et al. Tractable Search for Learning Exponential Models of Rankings , 2009, AISTATS.
[12] S. Starr. THERMODYNAMIC LIMIT FOR THE MALLOWS MODEL ON Sn , 2009, 0904.0696.
[13] Persi Diaconis,et al. The Markov chain Monte Carlo revolution , 2008 .
[14] Marina Meila,et al. Estimation and clustering with infinite rankings , 2008, UAI.
[15] Leonidas J. Guibas,et al. Efficient Inference for Distributions on Permutations , 2007, NIPS.
[16] Yi Mao,et al. Non-parametric Modeling of Partially Ranked Data , 2007, NIPS.
[17] Thomas L. Griffiths,et al. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.
[18] V. Y. Popov,et al. Multiple genome rearrangement by swaps and by element duplications , 2007, Theor. Comput. Sci..
[19] D. Critchlow. Ulam's Metric , 2006 .
[20] Angela D'Elia,et al. A mixture model for preferences data analysis , 2005, Comput. Stat. Data Anal..
[21] P. Diaconis,et al. Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques , 2004, math/0401318.
[22] R. Arratia,et al. Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .
[23] Thomas Brendan Murphy,et al. Mixtures of distance-based models for ranking data , 2003, Comput. Stat. Data Anal..
[24] P. Damien,et al. Conjugacy class prior distributions on metric‐based ranking models , 2002 .
[25] John D. Lafferty,et al. Cranking: Combining Rankings Using Conditional Probability Models on Permutations , 2002, ICML.
[26] Pierre Hansen,et al. Variable neighborhood search , 1997, Eur. J. Oper. Res..
[27] P. Diaconis,et al. Trailing the Dovetail Shuffle to its Lair , 1992 .
[28] Joseph S. Verducci,et al. Probability models on rankings. , 1991 .
[29] M. Fligner,et al. Multistage Ranking Models , 1988 .
[30] P. Donnelly,et al. Partition structures, Polya urns, the Ewens sampling formula, and the ages of alleles. , 1986, Theoretical population biology.
[31] M. Fligner,et al. Distance Based Ranking Models , 1986 .
[32] R. Plackett. The Analysis of Permutations , 1975 .
[33] W. Ewens. The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.
[34] C. L. Mallows. NON-NULL RANKING MODELS. I , 1957 .
[35] P. Rinker. A Mallows model for Coxeter groups and buildings , 2011 .
[36] Peter McCullagh,et al. Random Permutations and Partition Models , 2011, International Encyclopedia of Statistical Science.
[37] E. Hüllermeier,et al. A Simple Instance-Based Approach to Multilabel Classification Using the Mallows Model , 2009 .
[38] Tayuan Huang,et al. Metrics on Permutations, a Survey , 2004 .
[39] P. Pevzner,et al. Genome-scale evolution: reconstructing gene orders in the ancestral species. , 2002, Genome research.
[40] P. Diaconis,et al. A Bayesian peek into feller volume I , 2002 .
[41] L. Thurstone. A law of comparative judgment. , 1994 .
[42] Martin Schader,et al. Analyzing and Modeling Data and Knowledge , 1992 .