Simultaneous identification of structural parameters and dynamic input with incomplete output‐only measurements

SUMMARY A hybrid heuristic optimization strategy is presented to simultaneously identify structural parameters and, when possible, dynamic input time histories from incomplete sets of output measurements. The proposed strategy combines a novel swarm intelligence algorithm, the artificial bee colony algorithm, with a local search operator, Nelder–Mead simplex method, integrated in a search space reduction approach, so as to improve the convergence efficiency of the overall identification process. Because of the independent nature of the algorithm, a parallel scheme is implemented so as to improve the computational efficiency. If the time histories of the structural response and information about the mass of the structural system are available, then the algorithm can also be used for the identification of the time histories of the dynamic input force through a modified Newmark integration scheme, using the current estimates of the structural parameters. To investigate the applicability of the proposed technique, three numerical examples, two shear-type building models and a coupled building system model under different conditions of data availabilities and noise corruption levels are presented. The results show that the proposed technique is powerful, robust and efficient in the simultaneous identification of the structural parameters and input force even from an incomplete set of noise-contaminated structural response measurements. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Chan Ghee Koh,et al.  Output‐only structural identification in time domain: Numerical and experimental studies , 2008 .

[2]  P. Ibáñez,et al.  Identification of dynamic parameters of linear and non-linear structural models from experimental data , 1973 .

[3]  Rik Pintelon,et al.  Parametric frequency domain modeling in modal analysis , 1989 .

[4]  Kai Qi,et al.  Adaptive H ∞ Filter: Its Application to Structural Identification , 1998 .

[5]  Raimondo Betti,et al.  Identification of Structural Systems using an Evolutionary Strategy , 2004 .

[6]  Li Zhou,et al.  An adaptive extended Kalman filter for structural damage identification , 2006 .

[7]  Chan Ghee Koh,et al.  Modified genetic algorithm strategy for structural identification , 2006 .

[8]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[9]  J. Chen,et al.  Simultaneous identification of structural parameters and input time history from output-only measurements , 2004 .

[10]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[11]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[12]  Raimondo Betti,et al.  Output Only Structural Identification with Minimal Instrumentation , 2013 .

[13]  Emilio Turco,et al.  A strategy to identify exciting forces acting on structures , 2005 .

[14]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[15]  Achintya Haldar,et al.  Health Assessment at Local Level with Unknown Input Excitation , 2005 .

[16]  Richard W. Longman,et al.  Identification of linear structural systems using earthquake‐induced vibration data , 1999 .

[17]  Jann N. Yang,et al.  Identification of Parametric Variations of Structures Based on Least Squares Estimation and Adaptive Tracking Technique , 2005 .

[18]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[19]  Richard W. Longman,et al.  On‐line identification of non‐linear hysteretic structural systems using a variable trace approach , 2001 .

[20]  Chan Ghee Koh,et al.  A hybrid computational strategy for identification of structural parameters , 2003 .

[21]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[22]  Christian Cremona,et al.  Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts , 2012 .

[23]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[24]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[25]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[26]  Richard W. Longman,et al.  On the Uniqueness of Solutions for the Identification of Linear Structural Systems , 2006 .

[27]  Chung Bang Yun,et al.  Substructural identification using neural networks , 2000 .

[28]  S. S. Law,et al.  Force Identification Based on Sensitivity in Time Domain , 2006 .

[29]  Graeme H. McVerry,et al.  Structural identification in the frequency domain from earthquake records , 1980 .

[30]  S. S. Law,et al.  Substructure methods for structural condition assessment , 2011 .

[31]  Elias B. Kosmatopoulos,et al.  Development of adaptive modeling techniques for non-linear hysteretic systems , 2002 .

[32]  Chung Bang Yun,et al.  Improved method for frequency domain identifications of structures , 1993 .

[33]  Raimondo Betti,et al.  Identification of structural models using a modified Artificial Bee Colony algorithm , 2013 .

[34]  Chan Ghee Koh,et al.  Uniformly sampled genetic algorithm with gradient search for structural identification - Part II: Local search , 2010 .

[35]  M. Hoshiya,et al.  Structural Identification by Extended Kalman Filter , 1984 .

[36]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[37]  Dervis Karaboga,et al.  A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems , 2011, Appl. Soft Comput..

[38]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[39]  Bin Xu,et al.  Structural parameters and dynamic loading identification from incomplete measurements: Approach and validation , 2012 .

[40]  Chan Ghee Koh,et al.  Identification and Uncertainty Estimation of Structural Parameters , 1994 .

[41]  Jann N. Yang,et al.  Sequential non-linear least-square estimation for damage identification of structures with unknown inputs and unknown outputs , 2007 .

[42]  Grace S. Wang Application of hybrid genetic algorithm to system identification , 2009 .

[43]  Duan Wang,et al.  System Identification with Limited Observations and without Input , 1997 .

[44]  Raimondo Betti,et al.  Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm , 2013 .

[45]  Achintya Haldar,et al.  Element Level System Identification with Unknown Input with Rayleigh Damping , 2004 .

[46]  Jiuchao Feng,et al.  Real-time nonlinear structural system identification via iterated unscented Kalman filter , 2012 .

[47]  He-sheng Tang,et al.  Differential evolution strategy for structural system identification , 2008 .

[48]  Usik Lee,et al.  A FREQUENCY-DOMAIN METHOD OF STRUCTURAL DAMAGE IDENTIFICATION FORMULATED FROM THE DYNAMIC STIFFNESS EQUATION OF MOTION , 2002 .

[49]  Zhaohua Wu,et al.  On the trend, detrending, and variability of nonlinear and nonstationary time series , 2007, Proceedings of the National Academy of Sciences.

[50]  Achintya Haldar,et al.  Element-level system identification with unknown input , 1994 .

[51]  José Elias Laier,et al.  A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification , 2009, Adv. Eng. Softw..