Mechanical characterization of brushite and hydroxyapatite cements.

[1]  J. Lemaître,et al.  Reinforcement of osteosynthesis screws with brushite cement. , 1999, Bone.

[2]  H. Garmestani,et al.  Biaxial testing of high strength carbon fiber composite cylinders for pulsed magnet reinforcement , 1999 .

[3]  George Z. Voyiadjis,et al.  Damage mechanics in engineering materials , 1998 .

[4]  D P Fyhrie,et al.  Human vertebral body apparent and hard tissue stiffness. , 1998, Journal of biomechanics.

[5]  P. Roschke,et al.  Failure Prediction for Cross-Rolled Beryllium Sheet Material , 1996 .

[6]  P. Brown,et al.  Mechanical properties of hydroxyapatite formed at physiological temperature , 1995 .

[7]  S A Goldstein,et al.  The relationship between the structural and orthogonal compressive properties of trabecular bone. , 1994, Journal of biomechanics.

[8]  J. Planell,et al.  Optimization of a calcium orthophosphate cement formulation occurring in the combination of monocalcium phosphate monohydrate with calcium oxide , 1994 .

[9]  J. Planell,et al.  Compressive strength and diametral tensile strength of some calcium-orthophosphate cements: a pilot study , 1993 .

[10]  R. B. Ashman,et al.  Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.

[11]  E. Munting,et al.  Calcium phosphate cements: effect of fluorides on the setting and hardening of beta-tricalcium phosphate-dicalcium phosphate-calcite cements. , 1991, Biomaterials.

[12]  E. Munting,et al.  Calcium phosphate cements: action of setting regulators on the properties of the beta-tricalcium phosphate-monocalcium phosphate cements. , 1989, Biomaterials.

[13]  L. S. Matthews,et al.  Comparison of the trabecular and cortical tissue moduli from human iliac crests , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[14]  J. Lemaître,et al.  Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system. , 1989, Biomaterials.

[15]  R. Tennyson,et al.  Closure of the Cubic Tensor Polynomial Failure Surface , 1989 .

[16]  R. Tennyson,et al.  Failure analysis of composite laminates including biaxial compression , 1983 .

[17]  R. Rose,et al.  Buckling studies of single human trabeculae. , 1975, Journal of biomechanics.

[18]  J. Pugh,et al.  The micro-mechanics of cancellous bone. II. Determination of the elastic modulus of individual trabeculae by a buckling analysis. , 1975, Bulletin of the Hospital for Joint Diseases.

[19]  T. G. Priddy A Fracture Theory for Brittle Anisotropic Materials , 1974 .

[20]  E. M. Wu,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[21]  O. Hoffman The Brittle Strength of Orthotropic Materials , 1967 .

[22]  L. Chow Calcium phosphate cements. , 2001, Monographs in oral science.

[23]  J. Lemaître,et al.  Optimization of setting time and mechanical strength of beta-TCP/MCPM cements , 1997 .

[24]  Sami H. Rizkalla,et al.  Finite element analysis of bolted connections for PFRP composites , 1996 .

[25]  Thierry Chotard,et al.  Experimental determination of TSAI failure tensorial terms Fij for unidirectional composite materials , 1995 .

[26]  Qi-Chang He,et al.  Conewise linear elastic materials , 1994 .

[27]  M. Frémond,et al.  A simple model of the mechanical behavior of ceramic-like materials , 1992 .

[28]  F. Linde,et al.  Tensile and compressive properties of cancellous bone. , 1991, Journal of biomechanics.

[29]  Sia Nemat-Nasser,et al.  Overall moduli of solids with microcracks: Load-induced anisotropy , 1983 .

[30]  A. Burstein,et al.  The elastic and ultimate properties of compact bone tissue. , 1975, Journal of biomechanics.

[31]  R. Hill The mathematical theory of plasticity , 1950 .