Influence of Uniform Noise on Two Light-Controlled oscillators

We study the influence of uniform noise on a system of two light-controlled oscillators (LCOs) under three different configurations: uncoupled, master–slave and mutually coupled LCOs. We find that noise can induce desynchronization via a phase transition-like phenomenon depending on the noise intensity and the characteristics of the LCOs.

[1]  L. Chua,et al.  Chaos via torus breakdown , 1987 .

[2]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[3]  R. G. Medhurst,et al.  Topics in the Theory of Random Noise , 1969 .

[4]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[5]  M. Rosenblum,et al.  Phase synchronization in driven and coupled chaotic oscillators , 1997 .

[6]  Inbo Kim,et al.  Origin of the transition inside the desynchronized state in coupled chaotic oscillators , 2003 .

[7]  Jürgen Kurths,et al.  Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. , 2002, Physical review letters.

[8]  Jean-Louis Deneubourg,et al.  Synchronous behavior in small populations of light-controlled oscillators , 2003 .

[9]  Carroll,et al.  Desynchronization by periodic orbits. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  István Z Kiss,et al.  Noise-aided synchronization of coupled chaotic electrochemical oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Kaspar Anton Schindler,et al.  When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize , 2000, Neuroscience Research.

[12]  Peter Jung,et al.  Noise in Spatially Extended Systems , 2001 .

[13]  Glass,et al.  Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Taishin Nomura,et al.  SYNTHETIC ANALYSIS OF PERIODICALLY STIMULATED EXCITABLE AND OSCILLATORY MEMBRANE MODELS , 1999 .

[15]  H H Abel,et al.  Synchronization in the human cardiorespiratory system. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  W. J. Cunningham,et al.  Introduction to Nonlinear Analysis , 1959 .

[17]  R. Pérez,et al.  Fine Structure of Phase Locking , 1982 .

[18]  R. Haberlandt Introduction to nonlinear science , 1996 .

[19]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[20]  P. Bressloff,et al.  Mode locking and Arnold tongues in integrate-and-fire neural oscillators. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Jean-Louis Deneubourg,et al.  Synchronization in light-controlled oscillators , 2003 .

[22]  Jürgen Kurths,et al.  Noise-enhanced phase synchronization of chaotic oscillators. , 2002, Physical review letters.

[23]  Enrico Simonotto,et al.  Stochastic Synchronization of Electroreceptors in paddlefish , 2000, Int. J. Bifurc. Chaos.

[24]  L. Wilkens,et al.  Synchronization of the Noisy Electrosensitive Cells in the Paddlefish , 1999 .

[25]  G. Buck Four-thirds power law for knots and links , 1998, Nature.

[26]  J. Teramae,et al.  Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. , 2004, Physical review letters.

[27]  Jack Browne Digital generator makes programmable noise , 2002 .

[28]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.