An Active-Set Method for Second-Order Conic-Constrained Quadratic Programming

We consider the minimization of a convex quadratic objective subject to second-order cone constraints. This problem generalizes the well-studied bound-constrained quadratic programming (QP) problem. We propose a new two-phase method: in the first phase a projected-gradient method is used to quickly identify the active set of cones, and in the second-phase Newton's method is applied to rapidly converge given the subsystem of active cones. Computational experiments confirm that the conically constrained QP is solved more efficiently by our method than by a specialized conic optimization solver and more robustly than by general nonlinear programming solvers.

[1]  Robert J. Vanderbei,et al.  USING LOQO TO SOLVE SECOND-ORDER CONE PROGRAMMING PROBLEMS , 2007 .

[2]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[3]  Oktay Günlük,et al.  Perspective reformulations of mixed integer nonlinear programs with indicator variables , 2010, Math. Program..

[4]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[5]  Pólik Imre,et al.  Conic Optimization Software , 2011 .

[6]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[7]  Sven Leyffer,et al.  Global and Finite Termination of a Two-Phase Augmented Lagrangian Filter Method for General Quadratic Programs , 2008, SIAM J. Sci. Comput..

[8]  Heinz H. Bauschke,et al.  Reflection-Projection Method for Convex Feasibility Problems with an Obtuse Cone , 2004 .

[9]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[10]  S. Poljak,et al.  On a positive semidefinite relaxation of the cut polytope , 1995 .

[11]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[12]  Sven Leyffer,et al.  User manual for filterSQP , 1998 .

[13]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[14]  G. McCormick,et al.  The Gradient Projection Method under Mild Differentiability Conditions , 1972 .

[15]  Masao Fukushima,et al.  On the Local Convergence of Semismooth Newton Methods for Linear and Nonlinear Second-Order Cone Programs Without Strict Complementarity , 2009, SIAM J. Optim..

[16]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[17]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[18]  Michael A. Saunders,et al.  User's Guide for SNOPT Version 7.4: Software for Large-Scale Nonlinear Programming , 2015 .

[19]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[20]  Nicholas I. M. Gould,et al.  A Second Derivative SQP Method: Global Convergence , 2010, SIAM J. Optim..

[21]  Daniel P. Robinson,et al.  A Globally Convergent Stabilized SQP Method , 2013, SIAM J. Optim..

[22]  Franz Rendl,et al.  Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations , 2009, Math. Program..

[23]  D. Bertsekas On the Goldstein-Levitin-Polyak gradient projection method , 1974, CDC 1974.

[24]  S. Ulbrich,et al.  Subgradient Based Outer Approximation for Mixed Integer Second Order Cone Programming , 2012 .

[25]  J. Frédéric Bonnans,et al.  Perturbation analysis of second-order cone programming problems , 2005, Math. Program..

[26]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[27]  Qingmin Meng,et al.  A semismooth Newton method for nonlinear symmetric cone programming , 2012, Math. Methods Oper. Res..

[28]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[29]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[30]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .