Eight nodes or nine

The chief advantage claimed for nine-noded shell elements is that they can pass constant curvature patch tests with bilinear element geometry while eight-noded shell elements cannot. It is shown that a simple modification of the shape functions of an eight-noded element can make this advantage disappear. Test results confirm this result and show that the performance of a modified eight-noded element is similar to that of recently reported nine-noded elements.

[1]  E. Wachspress High‐order curved finite elements , 1981 .

[2]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[3]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[4]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[5]  Ted Belytschko,et al.  Implementation and application of a 9-node Lagrange shell element with spurious mode control , 1985 .

[6]  T. K. Hellen,et al.  On reduced integration in solid isoparametric elements when used in shells with membrane modes , 1976 .

[7]  H. V. Lakshminarayana,et al.  A shear deformable curved shell element of quadrilateral shape , 1989 .

[8]  Martin Cohen,et al.  The “heterosis” finite element for plate bending , 1978 .

[9]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[10]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[11]  J. J. Rhiu,et al.  A new efficient mixed formulation for thin shell finite element models , 1987 .

[12]  Donald W. White,et al.  Testing of shell finite element accuracy and robustness , 1989 .

[13]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[14]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[15]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[16]  P. Pinsky,et al.  An assumed covariant strain based 9‐node shell element , 1987 .

[17]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[18]  Donald W. White,et al.  Accurate and efficient nonlinear formulation of a nine-node shell element with spurious mode control , 1990 .

[19]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[20]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .