A Theoretical and Experimental View on the Temperature Dependence of the Electronic Conduction through a Schottky Barrier in a Resistively Switching SrTiO3‐Based Memory Cell

Metal–semiconductor Schottky interfaces are of high interest in many fields of semiconductor physics. One type of electronic devices based on Schottky contacts are resistive switching cells. The mostly applied analytical models are insufficient to describe all Schottky contact systems, which further impedes finding the correct conduction mechanism and may lead to physical misunderstandings. In this work, the electron transport properties of the resistively switching SrTiO3/Pt interface model system are investigated using a combination of experimental and theoretical methods. Temperature‐dependent I–V curves are measured and analyzed using an analytical approach, an atomistic approach based on density functional theory and the nonequilibrium Green's function formalism, and a continuum modeling approach. The findings suggest two different conduction mechanisms. Instead of a current transport over the barrier, as in the case of Schottky emission theory, the simulations show that tunneling through the Schottky barrier dominates. In the low voltage range, only thermally excited electrons can tunnel into the conduction band. For higher voltages, the SrTiO3 conduction band and the Fermi level at the injecting Pt‐electrode are aligned, allowing also electrons at the Fermi‐edge to tunnel. Consequently, the temperature dependence changes, leading to a crossing of the I–V curves at different temperatures.

[1]  R. Dittmann,et al.  Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM , 2017, Advanced materials.

[2]  R. Dittmann,et al.  Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes , 2016, Nature Communications.

[3]  Y. Asai,et al.  Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models. , 2016, Physical chemistry chemical physics : PCCP.

[4]  John Paul Strachan,et al.  Direct Observation of Localized Radial Oxygen Migration in Functioning Tantalum Oxide Memristors. , 2016, Advanced materials.

[5]  S. Menzel,et al.  Nanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process , 2016 .

[6]  Catherine E. Graves,et al.  In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors , 2015, 1510.05066.

[7]  S. Stemmer,et al.  Tailoring resistive switching in Pt/SrTiO3 junctions by stoichiometry control , 2015, Scientific Reports.

[8]  R. Dittmann,et al.  Impact of the cation-stoichiometry on the resistive switching and data retention of SrTiO3 thin films , 2015 .

[9]  H-treatment impact on conductive-filament formation and stability in Ta2O5-based resistive-switching memory cells , 2015 .

[10]  R. Dittmann,et al.  Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography , 2014, Scientific Reports.

[11]  D. Kwon,et al.  Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3 , 2014 .

[12]  T. Schroeder,et al.  In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells , 2014 .

[13]  S. Stemmer,et al.  Intrinsic Mobility Limiting Mechanisms in Lanthanum-Doped Strontium Titanate , 2014, 1405.2967.

[14]  Gerard Ghibaudo,et al.  A Combined Ab Initio and Experimental Study on the Nature of Conductive Filaments in ${\rm Pt}/{\rm Hf}{\rm O}_{2}/{\rm Pt}$ Resistive Random Access Memory , 2014, IEEE Transactions on Electron Devices.

[15]  Y. Nishi,et al.  Vacancy Cohesion-Isolation Phase Transition Upon Charge Injection and Removal in Binary Oxide-Based RRAM Filamentary-Type Switching , 2013, IEEE Transactions on Electron Devices.

[16]  Y. Nishi,et al.  Charge-dependent oxygen vacancy diffusion in Al2O3-based resistive-random-access-memories , 2013 .

[17]  Wenhao Chen,et al.  Dislocation impact on resistive switching in single-crystal SrTiO3 , 2013 .

[18]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[19]  X. Cartoixà,et al.  Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO 2 /metal structures , 2012 .

[20]  F. Zahid,et al.  Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study , 2012 .

[21]  Stefan Blügel,et al.  Strength of the effective Coulomb interaction at metal and insulator surfaces. , 2012, Physical review letters.

[22]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[23]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[24]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[25]  Shimeng Yu,et al.  Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model , 2011 .

[26]  D. Wolansky,et al.  Impact of Temperature on the Resistive Switching Behavior of Embedded $\hbox{HfO}_{2}$-Based RRAM Devices , 2011, IEEE Transactions on Electron Devices.

[27]  Seong-Geon Park,et al.  Impact of Oxygen Vacancy Ordering on the Formation of a Conductive Filament in $\hbox{TiO}_{2}$ for Resistive Switching Memory , 2011, IEEE Electron Device Letters.

[28]  James A. Bain,et al.  Computational investigations into the operating window for memristive devices based on homogeneous ionic motion , 2011 .

[29]  T. Gu,et al.  Conductive path formation in the Ta₂O₅ atomic switch: first-principles analyses. , 2010, ACS nano.

[30]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[31]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[32]  B. Meyer,et al.  Schottky barriers at transition-metal/ SrTiO 3 ( 001 ) interfaces , 2009 .

[33]  Jirong Sun,et al.  Electronic transport and colossal electroresistance in SrTiO3:Nb-based Schottky junctions , 2009 .

[34]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[35]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[36]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[37]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[38]  Jack C. Lee,et al.  Study of the electronic conduction mechanism in Nb-doped SrTiO3 thin films with Ir and Pt electrodes , 2000 .

[39]  J. Lee,et al.  The temperature dependence of the conduction current in Ba0.5Sr0.5TiO3 thin-film capacitors for memory device applications , 2000 .

[40]  C. Hwang,et al.  Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO3 thin films , 1999 .

[41]  Robert E. Jones,et al.  Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films , 1998 .

[42]  C. Hwang,et al.  A COMPARATIVE STUDY ON THE ELECTRICAL CONDUCTION MECHANISMS OF (BA0.5SR0.5)TIO3 THIN FILMS ON PT AND IRO2 ELECTRODES , 1998 .

[43]  T. Tseng,et al.  Electronic defect and trap-related current of (Ba0.4Sr0.6)TiO3 thin films , 1997 .

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  Ho-Kyu Kang,et al.  Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra‐large‐scale integrated dynamic random access memory application , 1995 .

[46]  R. Moos,et al.  Hall mobility of undoped n-type conducting strontium titanate single crystals between 19 K and 1373 K , 1995 .

[47]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[48]  G. R. Miller,et al.  Point defects in reduced strontium titanate , 1973 .

[49]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[50]  F. Low,et al.  Mobility of Slow Electrons in Polar Crystals , 1955 .

[51]  H. A. Kramers,et al.  Wellenmechanik und halbzahlige Quantisierung , 1926 .

[52]  Gregor Wentzel,et al.  Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .