Acetylenic tetrathiafulvalene-dicyanovinyl donor-acceptor chromophores.

Compounds incorporating the tetrathiafulvalene (TTF) donor unit and one or two cyanoethynylethene (CEE) acceptor units were prepared by Knoevenagel condensations of highly unstable, TTF-linked propargylic aldehyde or ketone derivatives. The resulting TTF-CEEs are very strong chromophores with low-energy end-absorptions beyond 900 nm. The molecules experience reversible oxidations of the TTF unit, and the optical properties of the oxidised species were elucidated by spectroelectrochemistry.

[1]  D. Guldi,et al.  Fullerene for organic electronics. , 2009, Chemical Society reviews.

[2]  Deqing Zhang,et al.  Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. , 2009, Chemical communications.

[3]  F. Diederich,et al.  New donor-acceptor chromophores by formal [2+2] cycloaddition of donor-substituted alkynes to dicyanovinyl derivatives. , 2009, Organic & biomolecular chemistry.

[4]  F. Diederich,et al.  Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. , 2009, Accounts of chemical research.

[5]  A. Madsen,et al.  Synthesis and characterization of tetrathiafulvalene-substituted di- and tetraethynylethenes with p-nitrophenyl acceptors. , 2009, The Journal of organic chemistry.

[6]  H. Hagemann,et al.  Pronounced electrochemical amphotericity of a fused donor-acceptor compound: a planar merge of TTF with a TCNQ-type bithienoquinoxaline. , 2009, Chemistry.

[7]  F. Diederich,et al.  New Push‐Pull Chromophores Featuring TCAQ (11,11,12,12‐Tetracyano‐ 9,10‐anthraquinodimethane) and Other Dicyanovinyl Acceptors , 2008 .

[8]  D. Amabilino,et al.  Assembly of functional molecular nanostructures on surfaces. , 2008, Chemical Society reviews.

[9]  F. Diederich,et al.  Conjugation and optoelectronic properties of acetylenic scaffolds and charge-transfer chromophores , 2008 .

[10]  E. Jacobsen,et al.  Cooperative catalysis by tertiary amino-thioureas: mechanism and basis for enantioselectivity of ketone cyanosilylation. , 2007, Journal of the American Chemical Society.

[11]  F. Diederich,et al.  New strong organic acceptors by cycloaddition of TCNE and TCNQ to donor-substituted cyanoalkynes. , 2007, Chemical communications.

[12]  S. Tian,et al.  Catalytic cyanosilylation of ketones with simple phosphonium salt , 2007 .

[13]  F. Diederich,et al.  Charge-transfer chromophores by cycloaddition-retro-electrocyclization: multivalent systems and cascade reactions. , 2007, Angewandte Chemie.

[14]  D. Guldi,et al.  Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? , 2007, Accounts of chemical research.

[15]  F. Diederich,et al.  Synthesis and characteristics of a nonaggregating tris(tetrathiafulvaleno)dodecadehydro[18]annulene. , 2006, Chemistry.

[16]  T. Clark,et al.  Tuning electron transfer through p-phenyleneethynylene molecular wires. , 2006, Chemical communications.

[17]  F. Diederich,et al.  Conjugated oligoenynes based on the diethynylethene unit. , 2005, Chemical reviews.

[18]  L. Sánchez,et al.  Tetrathiafulvalene: A Paradigmatic Electron Donor Molecule , 2005 .

[19]  Gregory Ho,et al.  The First Studies of a Tetrathiafulvalene‐σ‐Acceptor Molecular Rectifier , 2005 .

[20]  Hsian-Rong Tseng,et al.  Molecular-mechanical switch-based solid-state electrochromic devices. , 2004, Angewandte Chemie.

[21]  C. Rovira,et al.  Novel fused D-A dyad and A-D-A triad incorporating tetrathiafulvalene and p-benzoquinone. , 2004, The Journal of organic chemistry.

[22]  J. O. Jeppesen,et al.  Synthesis and non-linear optical properties of mono-pyrrolotetrathiafulvalene derived donor–π–acceptor dyads , 2004 .

[23]  F. Diederich,et al.  Cyanoethynylethenes: A Class of Powerful Electron Acceptors for Molecular Scaffolding We thank the ETH Research Council and the Fonds der Chemischen Industrie for their support of this work. Robin Gist is acknowledged for the supply of starting materials. , 2002 .

[24]  F. Diederich,et al.  Cyanoethynylethenes: a class of powerful electron acceptors for molecular scaffolding. , 2002, Angewandte Chemie.

[25]  J. Orduna,et al.  Tetrathiafulvalene derivatives as NLO-phores: synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-pi-acceptor dyads. , 2001, The Journal of organic chemistry.

[26]  José L. Segura,et al.  New Concepts in Tetrathiafulvalene Chemistry. , 2001, Angewandte Chemie.

[27]  Myers,et al.  Synthesis of the Kedarcidin Core Structure by a Transannular Cyclization Pathway Financial support from the National Institutes of Health is gratefully acknowledged. , 2000, Angewandte Chemie.

[28]  Carlos Díaz,et al.  TCNE and TCNQ ligands as efficient bridges in mixed-valence complexes containing iron–cyclopentadienyl and other organometallic systems , 2000 .

[29]  M. Bryce Functionalised tetrathiafulvalenes: new applications as versatile π-electron systems in materials chemistry , 2000 .

[30]  M. Bryce Tetrathiafulvalenes as π‐Electron Donors for Intramolecular Charge‐Transfer Materials , 1999 .

[31]  E. Levillain,et al.  Spectroelectrochemistry of Electrogenerated Tetrathiafulvalene-Derivatized Poly(thiophenes): Toward a Rational Design of Organic Conductors with Mixed Conduction , 1998 .

[32]  J. Orduna,et al.  A convenient one-step synthesis of formyltetrathiafulvalene vinylogs: Building blocks for new NLO materials , 1998 .

[33]  J. Orduna,et al.  New TTF-based donor-acceptor molecules linked by flexible ethylenic spacers , 1997 .

[34]  J. Heinze,et al.  Synthesis and electrochemical properties of 4‐phenyl‐1‐buten‐3‐yne‐1,1,2‐tricarbonitriles and tricyanoacrylates , 1995 .

[35]  J. Orduna,et al.  THE FIRST ALLYLIC ALCOHOL DERIVATIVES OF TETRATHIAFULVALENE. A ROUTE TO NEW COVALENTLY LINKED DONORS , 1995 .

[36]  J. Orduna,et al.  The synthesis of 4,4′(5′)-diformyltetrathiafulvalene , 1994 .

[37]  M. Nielsen,et al.  Tetrathiafulvalenes as building blocks in supramolecular chemistry II , 2010 .

[38]  Peter G. Jones,et al.  On a Metathesis Reaction of Tetrathiafulvalene (TTF) , 1991 .

[39]  M. Kreutzer,et al.  Novel Planar π‐Systems , 1990 .

[40]  M. Hanack,et al.  Syntheses and electrochemical properties of tetracyano-p-quinodimethane derivatives containing fused aromatic rings , 1989 .

[41]  M. Hanack,et al.  Synthesis and electrochemical properties of 15,15,16,16-tetracyano-6, 13-pentacenequinodimethane (TCPQ) , 1988 .

[42]  R. Haddon,et al.  Cyano-based acceptor molecules. Electrochemistry and electron spin resonance spectroscopy , 1980 .

[43]  Y. Tohda,et al.  A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .

[44]  F. M. Page,et al.  Electron Affinity of Tetracyanoethylene , 1963, Nature.

[45]  E. Knoevenagel Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine , 1898 .