Polynomial chaos expansion with random and fuzzy variables

Abstract A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.

[1]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[2]  David Moens,et al.  A fuzzy finite element procedure for the calculation of uncertain frequency-response functions of damped structures: Part 1—Procedure , 2005 .

[3]  Sondipon Adhikari,et al.  Polynomial Chaos Expansion and Steady-State Response of a Class of Random Dynamical Systems , 2015 .

[4]  Antonello Monti,et al.  Extending Polynomial Chaos to Include Interval Analysis , 2008, IEEE Transactions on Instrumentation and Measurement.

[5]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[6]  Michael Hanss,et al.  Applied Fuzzy Arithmetic: An Introduction with Engineering Applications , 2004 .

[7]  Steffen Marburg,et al.  Identification of composite uncertain material parameters from experimental modal data , 2014 .

[8]  Sondipon Adhikari,et al.  A spectral approach for fuzzy uncertainty propagation in finite element analysis , 2014, Fuzzy Sets Syst..

[9]  S. Marburg,et al.  On Construction of Uncertain Material Parameter using Generalized Polynomial Chaos Expansion from Experimental Data , 2013 .

[10]  Seamus D. Garvey,et al.  Dynamics of Rotating Machines , 2010 .

[11]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[12]  V. Kreinovich,et al.  Imprecise probabilities in engineering analyses , 2013 .

[13]  W. Desmet,et al.  A fuzzy finite element procedure for the calculation of uncertain frequency response functions of damped structures: Part 2—Numerical case studies , 2005 .

[14]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[15]  David Moens,et al.  A survey of non-probabilistic uncertainty treatment in finite element analysis , 2005 .

[16]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[17]  G. Schuëller,et al.  Uncertainty analysis of complex structural systems , 2009 .

[18]  J. Sinou,et al.  Influence of Polynomial Chaos expansion order on an uncertain asymmetric rotor system response , 2015 .

[19]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[20]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[21]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .