CMOS Passive Phase Shifter With Group-Delay Deviation of 6.3 ps at $K$-Band

This paper presents a CMOS vector-sum-based phase shifter with a flat group-delay deviation of 6.3 ps at K-band. The theoretical analyses confirm the effects of the nonideal phase-invertible variable attenuator (PIVA) on the increasing of the root-mean-square (rms) phase error and magnitude variation of the phase shifter. The design procedures, which can eliminate the effects from the voltage-dependent parasitics of the reflection load and the nonideal directional coupler, are reported to make an ideal phase reversal and reduce the attenuation-dependent phase shifting of the PIVA. The prototype of the phase shifter, which consists of one 3-dB directional coupler, two PIVAs, and one power combiner, are realized by using synthetic transmission lines for the circuit miniaturization. The circuit is fabricated in standard 0.18-μm 1P6M CMOS technology with a size of 560 μm × 560 μm excluding the testing pads. The comparisons between simulated and experimental results show that the prototype can cover full 360° phase shifting with less than 1.5° of rms phase error and 0.45 dB of magnitude variation from 22.0 to 26.0 GHz. The input P1dB and IIP3 of the prototype with a relative phase shifting of 292.5° are 12.0 and 28.0 dBm, respectively.

[1]  Robert A. York,et al.  Distributed analog phase shifters with low insertion loss , 1999 .

[2]  N. Imai,et al.  One-chip endless phase shifter IC's for space diversity combiner , 1996 .

[3]  F. Ellinger,et al.  Calibratable adaptive antenna combiner at 5.2 GHz with high yield for laptop interface card , 2000 .

[4]  T. Ohira,et al.  Modified constant modulus algorithm for digital signal processing adaptive antennas with microwave analog beamforming , 2002 .

[5]  Ik-Soo Chang,et al.  Reflection-type low-phase-shift attenuator , 1998 .

[6]  A.F. Molisch,et al.  Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection , 2005, IEEE Transactions on Signal Processing.

[7]  H. Atwater,et al.  A Low-Loss Ku-Band Monolithic Analog Phase Shifter , 1987 .

[8]  Gabriel M. Rebeiz,et al.  A 22–24 GHz 4-Element CMOS Phased Array With On-Chip Coupling Characterization , 2008, IEEE Journal of Solid-State Circuits.

[9]  Andreas Spanias,et al.  Smart-antenna system for mobile communication networks .Part 2. Beamforming and network throughput , 2002 .

[10]  Chao-Wei Wang,et al.  A miniaturized power combiner for compact design of CMOS phase shifter at K-Band , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[12]  D. Adler,et al.  Broadband phase invariant attenuator , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[13]  Huei Wang,et al.  K-band HBT and HEMT monolithic active phase shifters using vector sum method , 2004, IEEE Transactions on Microwave Theory and Techniques.

[14]  Gabriel M. Rebeiz,et al.  A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-$\mu$ m SiGe BiCMOS Technology , 2009, IEEE Journal of Solid-State Circuits.

[15]  Ian D. Robertson,et al.  Microwave I-Q vector modulator using a simple technique for compensation of FET parasitics , 2002 .

[16]  Huei Wang,et al.  K-band HBT and HEMT monolithic active phase shifters using vector sum method , 2004 .

[17]  J. Papapolymerou,et al.  A Silicon-Germanium Receiver for X-Band Transmit/Receive Radar Modules , 2008, IEEE Journal of Solid-State Circuits.

[18]  Gabriel M. Rebeiz,et al.  0.13-$\mu$m CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays , 2007, IEEE Journal of Solid-State Circuits.

[19]  F. Ellinger,et al.  Varactor-loaded transmission-line phase shifter at C-band using lumped elements , 2003 .

[20]  Y. Suzuki,et al.  Megalithic microwave signal processing for phased-array beam forming and steering , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[21]  Meng-Ju Chiang,et al.  Design of Synthetic Quasi-TEM Transmission Line for CMOS Compact Integrated Circuit , 2007, IEEE Transactions on Microwave Theory and Techniques.

[22]  Stepan Lucyszyn,et al.  Analog reflection topology building blocks for adaptive microwave signal processing applications , 1995 .

[23]  Sheng-Fuh Chang,et al.  2.45-GHz CMOS Reflection-Type Phase-Shifter MMICs With Minimal Loss Variation Over Quadrants of Phase-Shift Range , 2008, IEEE Transactions on Microwave Theory and Techniques.

[24]  Hong-Yeh Chang,et al.  New miniature 15-20-GHz continuous-phase/amplitude control MMICs using 0.18-/spl mu/m CMOS technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[25]  F. Ellinger,et al.  Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining , 2002, IEEE J. Solid State Circuits.

[26]  Gabriel M. Rebeiz,et al.  A $Q$ -Band Four-Element Phased-Array Front-End Receiver With Integrated Wilkinson Power Combiners in 0.18-$\mu{{\hbox{m}}}$ SiGe BiCMOS Technology , 2008, IEEE Transactions on Microwave Theory and Techniques.

[27]  Huei Wang,et al.  New miniature 15-20-GHz continuous-phase/amplitude control MMICs using 0.18-/spl mu/m CMOS technology , 2006 .

[28]  Gabriel M. Rebeiz,et al.  An X- and Ku-Band 8-Element Phased-Array Receiver in 0.18-$\mu{\hbox{m}}$ SiGe BiCMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[29]  Meng-Ju Chiang,et al.  Artificial-Synthesized Edge-Coupled Transmission Lines for Compact CMOS Directional Coupler Designs , 2009, IEEE Transactions on Microwave Theory and Techniques.

[30]  J. Paramesh,et al.  A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity , 2005, IEEE Journal of Solid-State Circuits.

[31]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[32]  M. Chua,et al.  1 GHz programmable analog phase shifter for adaptive antennas , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[33]  David J. Allstot,et al.  Reflective-Type Phase Shifters for Multiple-Antenna Transceivers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.