Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations

It is shown that the vertices of benzenoid systems admit a labeling which reflects their distance relations. To every vertex of a molecular graph of a benzenoid hydrocarbon a sequence of zeros and ones (a binary number) can be associated, such that the number of positions in which these sequences differ is equal to the graph-theoretic vertex distance. It is shown by an example that such labelings can be used not only for nomenclature purposes but also for fast evaluation of molecular parameters based on the graph distance.

[1]  Harry P. Schultz,et al.  Topological organic chemistry. 4. Graph theory, matrix permanents, and topological indices of alkanes , 1992, J. Chem. Inf. Comput. Sci..

[2]  Sven J. Cyvin,et al.  Theory of coronoid hydrocarbons , 1991 .

[3]  Ivan Gutman,et al.  Selected properties of the Schultz molecular topological index , 1994, J. Chem. Inf. Comput. Sci..

[4]  S. J. Cyvin,et al.  Introduction to the theory of benzenoid hydrocarbons , 1989 .

[5]  R. Graham,et al.  On embedding graphs in squashed cubes , 1972 .

[6]  Harry P. Schultz,et al.  Topological organic chemistry. 5. Graph theory, matrix hafnians and pfaffians, and topological indexes of alkanes , 1992, J. Chem. Inf. Comput. Sci..

[7]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[8]  Andrey A. Dobrynin,et al.  The Szeged Index and an Analogy with the Wiener Index , 1995, J. Chem. Inf. Comput. Sci..

[9]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[10]  Xiaofeng Guo,et al.  Wiener matrix: Source of novel graph invariants , 1993, J. Chem. Inf. Comput. Sci..

[11]  Horst Sachs,et al.  Perfect matchings in hexagonal systems , 1984, Comb..

[12]  R. Graham,et al.  Isometric embeddings of graphs. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Harry P. Schultz,et al.  Topological organic chemistry. 1. Graph theory and topological indices of alkanes , 1989, J. Chem. Inf. Comput. Sci..

[14]  Harry P. Schultz,et al.  Topological organic chemistry. 2. Graph theory, matrix determinants and eigenvalues, and topological indexes of alkanes , 1990, J. Chem. Inf. Comput. Sci..

[15]  B. Mohar,et al.  How to compute the Wiener index of a graph , 1988 .

[16]  R. P. Kurshan,et al.  On the addressing problem of loop switching , 1972 .

[17]  Zlatko Mihalić,et al.  A graph-theoretical approach to structure-property relationships , 1992 .

[18]  Nenad Trinajstic,et al.  Molecular topological index , 1990, J. Chem. Inf. Comput. Sci..

[19]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[20]  Seymour B. Elk,et al.  Graph theoretical algorithm to canonically name the isomers of the regular polyhedranes , 1992, J. Chem. Inf. Comput. Sci..

[21]  Harry P. Schultz,et al.  Topological organic chemistry. 3. Graph theory, binary and decimal adjacency matrices, and topological indices of alkanes , 1991, J. Chem. Inf. Comput. Sci..

[22]  A. Balaban Highly discriminating distance-based topological index , 1982 .

[23]  Nenad Trinajstic,et al.  On the determinant of the adjacency-plus-distance matrix as the topological index for characterizing alkanes , 1991, J. Chem. Inf. Comput. Sci..

[24]  Milan Randic,et al.  Wiener Matrix Invariants , 1994, Journal of chemical information and computer sciences.

[25]  Seymour B. Elk A canonical ordering of polybenzenes and polymantanes using a prime number factorization technique , 1990 .

[26]  Dejan Plavšić,et al.  Molecular topological index: a relation with the Wiener index , 1992, J. Chem. Inf. Comput. Sci..

[28]  M. Randic Novel molecular descriptor for structure—property studies , 1993 .

[29]  Sonja Nikolic,et al.  Comparative study of molecular descriptors derived from the distance matrix , 1992, J. Chem. Inf. Comput. Sci..

[30]  Dejan Plavšić,et al.  The distance matrix in chemistry , 1992 .